• Title/Summary/Keyword: $SiO_2$ Nanoparticles

Search Result 204, Processing Time 0.029 seconds

Synthesis and Biodistribution of Cat's Eye-shaped [57Co]CoO@SiO2 Nanoshell Aqueous Colloids for Single Photon Emission Computed Tomography (SPECT) Imaging Agent

  • Kwon, Minjae;Park, Jeong Hoon;Jang, Beom-Su;Jung, Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2367-2370
    • /
    • 2014
  • "Cat's eye"-shaped $[^{57}Co]CoO@SiO_2$ core-shell nanostructure was prepared by the reverse microemulsion method combined with radioisotope technique to investigate a potential imaging agent for a single photon emission computed tomography (SPECT) in nuclear medicine. The core cobalt oxide nanorods were obtained by thermal decomposition of $Co-(oleate)_2$ precursor from radio isotope Co-57 containing cobalt chloride and sodium oleate. The $SiO_2$ coating on the surface of the core cobalt oxide nanorods was produced by hydrolysis and a condensation reaction of tetraethylorthosilicate (TEOS) in the water phase of the reverse microemulsion system. In vivo test, micro SPECT image was acquired with nude mice after 30 min of intravenous injection of $[^{57}Co]CoO@SiO_2$ core-shell nanostructure.

Resistive Switching Effect of the $In_2O_3$ Nanoparticles on Monolayered Graphene for Flexible Hybrid Memory Device

  • Lee, Dong Uk;Kim, Dongwook;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.396-396
    • /
    • 2013
  • The resistive random access memory (ReRAM) has several advantages to apply next generation non-volatile memory device, because of fast switching time, long retentions, and large memory windows. The high mobility of monolayered graphene showed several possibilities for scale down and electrical property enhancement of memory device. In this study, the monolayered graphene grown by chemical vapor deposition was transferred to $SiO_2$ (100 nm)/Si substrate and glass by using PMMA coating method. For formation of metal-oxide nanoparticles, we used a chemical reaction between metal films and polyamic acid layer. The 50-nm thick BPDA-PDA polyamic acid layer was coated on the graphene layer. Through soft baking at $125^{\circ}C$ or 30 min, solvent in polyimide layer was removed. Then, 5-nm-thick indium layer was deposited by using thermal evaporator at room temperature. And then, the second polyimide layer was coated on the indium thin film. After remove solvent and open bottom graphene layer, the samples were annealed at $400^{\circ}C$ or 1 hr by using furnace in $N_2$ ambient. The average diameter and density of nanoparticle were depending on annealing temperature and times. During annealing process, the metal and oxygen ions combined to create $In_2O_3$ nanoparticle in the polyimide layer. The electrical properties of $In_2O_3$ nanoparticle ReRAM such as current-voltage curve, operation speed and retention discussed for applictions of transparent and flexible hybrid ReRAM device.

  • PDF

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.

Experimental investigation of self-healing concrete after crack using nano-capsules including polymeric shell and nanoparticles core

  • Taheri, Mojtaba Naseri;Sabet, Seyyed Ali;Kolahchi, Reza
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.337-343
    • /
    • 2020
  • In this paper, we focused on the self-healing concrete using new nano-capsules. Three types of nano-capsules with respect to availability, high strength and temperature tolerance are used; type 1 is URF and polyethylene (PE) as shell and nano titanium oxide (TiO2) as core, type 2 is URF and PE as shell and nano silica oxide (SiO2) as core, type 3 is PE as shell and nano silica oxide (SiO2) as core. The concrete samples mixed by nano-capsules with three percents of 0.5, 1 and 1.5. Based on experimental tests and the compressive strength of samples, the URF-PE-SiO2 is selected for additional tests of compressive strength before and after recovery, ultrasonic test, ion chlorine and water penetration depths. After careful investigation, it is concluded that the optimum value of URF-PE-SiO2 nano-capsules is 0.5% since leads to higher compressive strength, ultrasonic test, ion chlorine and water penetration depths.

Improvement of Fast-Growing Wood Species Characteristics by MEG and Nano SiO2 Impregnation

  • DIRNA, Fitria Cita;RAHAYU, Istie;ZAINI, Lukmanul Hakim;DARMAWAN, Wayan;PRIHATINI, Esti
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.41-49
    • /
    • 2020
  • Jabon (Anthocephalus cadamba) is a fast-growing wood species that is widely utilized for light construction and other purposes in Indonesia. The objectives of the current study were to determine the effects of monoethylene glycol (MEG) and SiO2 nanoparticles (nano SiO2) impregnation treatment on the dimensional stability and density of jabon wood and to identify the characteristics of impregnated jabon wood. Wood samples were immersed in water (as untreated), MEG, 0.5% MEGSiO2, then impregnated by applying 0.5 bar of vacuum for 60 min, and then applying 2.5 bar of pressure for 120 min. The results showed that impregnation with MEG and Nano SiO2 had a significant effect on the dimensional stability of jabon wood. Polymers can fill cell walls in wood indicated by increasing weight percentgain, antiswelling efficiency, bulking effect, and density, then decreasing in water uptake value. Jabon wood morphology by using SEM showed that MEGSiO2 polymers can cover part of the pitsin the wood vessel wall of jabon. This finding was reinforced by EDX results showing that the silicon content was increased due to the addition of SiO2 nano. The XRD diffraction pattern indicated that MEGSiO2 treatment increased the degree of crystallinity in wood samples. Overall, treatment with 0.5% MEGSiO2 led to the most improvement in the dimensional stability of 5-year-old jabon wood in this study.

Coating Performance of SiO2 / Epoxy Composites as a Corrosion Protector

  • Rzaij, Dina R.;Ahmed, Nagham Y.;Alhaboubi, Naseer
    • Corrosion Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.111-120
    • /
    • 2022
  • To solve the corrosion problem of industrial equipment and other constructions containing metals, corrosion protection can be performed by using coating which provides a barrier between the metal and its environment. Coatings play a significant role in protecting irons and steels in harsh marine and acid environments. This study was conducted to identify an anti-corrosive epoxy coating for carbon steel composite with 0.1, 0.3, and 0.5 wt% concentrations of nanoparticles of SiO2 using the dip-coating method. The electrochemical behavior was analyzed with open circuit potential (OCP) technics and polarization curves (Tafle) in 3.5 wt% NaCl and 5 vol% H2SO4 media. The structure, composition, and morphology were characterized using different analytical techniques such as X-ray Diffraction (XRD), Fourier Transform Infrared spectrum (FT-IR), and Scanning Electron Microscopy (SEM). Results revealed that epoxynano SiO2 coating demonstrated a lower corrosion rate of 2.51 × 10-4 mm/year and the efficiency of corrosion protection was as high as 99.77%. The electrochemical measurement showed that the nano-SiO2 / epoxy coating enhanced the anti-corrosive performance in both NaCl and H2SO4 media.

Submicrospheres as Both a Template and the Catalyst Source. Silica Submicro-reactor Dotted with Palladium Nanoparticles as Catalysts

  • Kim, Sung Min;Noh, Tae Hwan;Jung, Ok-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1127-1130
    • /
    • 2013
  • Formation of the monodisperse submicrospheres consisting of ionic palladium(II) complexes, $[(Me_4en)Pd(L)]_2(X)_4$($Me_4en$ = N,N,N',N'-tetramethylethylenediamine; L = bis(4-(4-pyridylcarboxyl)phenyl)methane; $X^-=BF_4{^-}$ and $ClO_4{^-}$), has been carried out without any templates or additives. The submicrospheres were coated with silicates, and then calcined in air at $550^{\circ}C$ for 1 h, to efficiently form hollow-spherical $SiO_2$ submicro-reactors dotted with palladium(0) nanoparticles (PdNPs). That is, the submicrospheres act as both a template and a source of the palladium metal nanoparticles. The submicro-reactors containing nano-catalysts have been characterized by means of SEM, TEM, and XPS. Notably, the reactors were proved to be very effective for Suzuki-Miyaura cross-coupling and hydrogenation reactions.

기지상 물질과의 결합특성이 금속입자의 성장 및 표면 플라즈몬 공진 특성에 미치는 영향

  • Kim, Yun-Ji;Lee, In-Gyu;Kim, Won-Mok;Lee, Gyeong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.426-426
    • /
    • 2011
  • 최근 들어 금속물질을 나노미터 단위로 구성할 수 있는 기술이 진보하면서, 금속 나노입자에 의해 발생되는 표면 플라즈몬에 대해서도 다양한 분야의 관심이 집중되고 있다. 유전체 물질을 기지상으로 하는 금속:유전체 나노복합체에서 금속 나노입자는 자유전자들의 집단 진동인 국소표면 플라즈몬 공진(Localized Surface Plasmon Resonance, LSPR)현상에 의해 국부전기장을 증대 시키고, 가시광 및 적외선 영역에서 특성 광흡수 거동을 보인다. 이와 같은 광학적 특성은 금속 나노입자들의 크기, 형태, 그리고 나노입자들의 주변을 구성하는 기지상 물질의 종류에 의해 조절된다. 금속:유전체 나노복합체에 나타나는 이러한 특성은 단순장식코팅 뿐만 아니라 광의 효율적 운용과 광을 매개로 한 기능발현을 필요로 하는 디스플레이, 광학 스위칭 소재 및 태양전지의 효율 향상을 위한 광흡수층 등 매우 다양한 응용이 가능하다. 본 연구에서는 다양한 굴절률을 갖는 재료들 중, 저굴절률을 갖는 SiO2와 고굴절률을 갖는 ZnS-SiO2를 기지상 재료로 선택하여 교번증착 스퍼터링법으로 Ag와 Au입자를 형성시켰다. Ag를 금속나노입자로 갖고, SiO2와 ZnS-SiO2를 기지상으로 하는 금속:유전체 나노복합체에서는 금속나노입자 형성에 따른 뚜렷한 표면 플라즈몬 공진 광흡수 피크가 관찰된 반면 Au나노입자는 기지상에 따라 각기 다른 광흡수 특성을 나타냈는데, SiO2기지상에서 명확한 광흡수 피크를 형성했던 경우와는 달리 ZnS-SiO2기지상에서는 특정파장에서의 흡수피크로 규정되기 어려운 넓은 파장범위에 걸친 완만한 광흡수 피크를 나타냈다. TEM 분석을 통해, ZnS-SiO2 기지상 내의 Au입자는 각각 독립되어 있는 Island형태가 아닌 유전체 기지상과 대칭적으로 혼합된 네트워크 형태의 Bruggeman 기하구조를 구성하고 있음을 확인하였고, 이는 Au입자가 형성되고 성장할 때 Au와 S의 높은 결합에너지로 인해 상당한 젖음 특성을 갖고 성장하였기 때문으로 판단됐다. 따라서 나노복합체를 구성하는 물질간의 광학적 특성뿐만 아니라 기지상 내에서의 금속입자의 성장거동에 대한 연구가 수반되었을 때, 금속:유전체 나노복합체의 표면 플라즈몬 공진 광흡수 특성을 보다 정확하게 제어할 수 있다.

  • PDF

Thickness Control of Core Shell type Nano CoFe2O4@SiO2 Structure (두께 조절이 가능한 코어셸 형태의 SiO2 coated CoFe2O4 구조)

  • Yu, Ri;Kim, Yoo-Jin;Pee, Jae-Hwan;Kim, Kyung-Ja
    • Journal of Powder Materials
    • /
    • v.17 no.3
    • /
    • pp.230-234
    • /
    • 2010
  • Homogenous silica-coated $CoFe_2O_4$ samples with controlled silica thickness were synthesized by the reverse microemulsion method. First, 7 nm size cobalt ferrite nanoparticles were prepared by thermal decomposition methods. Hydrophobic cobalt ferrites were coated with controlled $SiO_2$ using polyoxyethylene(5)nonylphenylether (Igepal) as a surfactant, $NH_4OH$ and tetraethyl orthosilicate (TEOS). The well controlled thickness of the silica shell was found to depend on the reaction time and the amount of surfactant used during production. Thick shell was prepared by increasing reaction time and small amount of surfactant.

The Effect of Residence Time on the Generation of Silica Nanoparticles in a Turbulent Diffusion Flame (난류 확산화염에서 체류시간이 실리카 나노입자의 생성에 미치는 영향)

  • Kwak, In-Jae;Bae, Soo-Ho;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.196-201
    • /
    • 2006
  • Silica(SiO2) nanoparticles are used as additives in plastics and rubbers to improve mechanical, electrical, magnetic properties and optical material. Silica nanoparticles were synthesized by the gas phase thermal oxidation of several kinds of precursors in many types of reactor. Diffusion flame reactor has some advantages compared with other types of reactors. In this study, we investigated the generation of silica nanoparticles on the effect of residence time by tetraethylothosilicate(TEOS) in a turbulent diffusion flame reactor controlled by providing reactant flowrate and reactor geometry affect particle morphology, particle size and particle size distribution. To determine the flame residence time, flame length should be determined which was examined by ICCD image. Particle size, distribution and morphology were performed with TEM.

  • PDF