• 제목/요약/키워드: $SiO_2$ Crystallization

검색결과 364건 처리시간 0.025초

아연결정유약의 결정 생성 및 제어를 위한 Zn2TiO4 활용 연구 (Application of Zn2TiO4 for nucleation and control of willemite crystalline glaze)

  • 이현수
    • 한국결정성장학회지
    • /
    • 제27권4호
    • /
    • pp.154-161
    • /
    • 2017
  • Anatase 형 $TiO_2$에 의해 저온에서 생성되는 $Zn_2TiO_4$는 willemite($Zn_2SiO_4$) 결정 전구체로 유약 내 willemite 생성에 매우 큰 영향을 준다. 안정적인 willemite 생성 및 위치 제어를 위해 $Zn_2TiO_4$를 활용하였다. 합성된 $Zn_2TiO_4$를 화장토(engobe)에 15 wt% 첨가하여 도포하면 유약 내에 결정의 생성과 위치를 조절할 수 있다. 발색제가 고용된 $Zn_2TiO_4$를 화장토에 적용하면 결정부분에만 발색효과를 얻을 수 있다. $Zn_2TiO_4$를 화장토(engobe)로 적용하면 한 번의 시유로 결정의 생성유무와, 위치, 색상 등을 임의로 조절할 수 있고 유약의 장식 효과를 높일 수 있다.

치관보철용 $CaO-MgO-SiO_{2}-P_{2}O_{5}-TiO_2$계 글라스 세라믹의 결정화와 기계적 물성에 미치는 열처리 조건의 영향 (Effects of Heat-treatment on Crystallization and Mechanical Properties of Glass ceramics for Dental crown prosthesis in the system $CaO-MgO-SiO_{2}-P_{2}O_{5}-TiO_2$)

  • 정인성;김부섭
    • 대한치과기공학회지
    • /
    • 제26권1호
    • /
    • pp.77-88
    • /
    • 2004
  • Glass ceramics for dental crown prosthesis were prepared by crystallization of CaO-MgO-SiO2-P2O5-TiO2 glasses. Their crystallization behaviors have been investigated as a function of heattreatment temperature and holding time in relation to mechanical properties. The results are as follows: Vickers hardness and bending strength of glass ceramics increased due to the precipitation of apatite, whitlockite, $\beta$-wollastonite, magnesium titanate, and diopside crystal phases within glass matrix. The final crystalline phase assemblages and the microstructures of the glass ceramics were found to be dependent on heat-treatment temperature and holding time. Vickers hardnes and bending strength of glass ceramics increased with increasing heat-treatment temperature and holding time.

  • PDF

강유전체 Fresnoite 결정을 갖는 유리의 제조 및 결정화 거동 (Preparation and Crystallization Kinetics of Glasses with Ferroelectric Fresnoite Crystal)

  • 이회관;채수진;강원호
    • 마이크로전자및패키징학회지
    • /
    • 제12권2호
    • /
    • pp.161-166
    • /
    • 2005
  • Fresnoite($Ba_2TiSi_2O_8$)결정을 갖는 $xK_2O-(33.3-x)BaO-16.7TiO_2-50SiO_2(mole\%)$ 유리조성에서 BaO를 $K_2O$로 대체함에 따른 유리화, 열적특성 및 결정화 거풍에 관하여 관찰하였다. x(0$\le$x$\le$20)의 함량이 증가함에 따라 유리화가 용이하였으며, 유리 전이온도 및 결정화 온도가 저온부로 이동하였다. $Ba_2TiSi_2O_8$결정상의 생성을 XRD분석을 통하여 확인하였으며, x의 함량증가가 이질상의 생성과는 무관함을 보였다. 결정화 거동을 DTA를 이용한 비등온법에 의하여 조사하였으며, x의 함량증가에 따라 avrami 지수(n)가 $2.26 {\pm}0.1,\;2.03 {\pm}0.1,\;1.93{\pm}0.15$로, 활성화 에너지는 약 $279 {\pm}12kJ/mole,\;302{\pm}7kJ/ mole,\;319{\pm}1kJ/mole$ 로 변화하였으며, SEM분석결과 x의 함량 증가 시 결정의 방향성이 두드러짐이 관찰되었다.

  • PDF

$Li_2O-SiO_2$ 계 유리의 결정화에 관한 연구 (The Cystallization Behavior of $Li_2O-SiO_2$ Glasses)

  • 김득중;김종희
    • 한국세라믹학회지
    • /
    • 제18권3호
    • /
    • pp.163-170
    • /
    • 1981
  • The crystallization of $Li_2O-SiO_2$ system glasses and the effect of phase separtion to crystal nucleation were studied. The crystallization temperatures of various glasses were determined by DTA and glasses were nucleation heat treated at the temperatures ranging from 45$0^{\circ}C$ to 5$25^{\circ}C$. These glasses were thengown at $700^{\circ}C$ to observable size in the optical microscope. Crystal nucleation rates of various glasses were obtained by estimating the number of crystals per unit volume. The main crystal phase of these glasses identified by X-ray diffraction was lithium disilicate ($Li_2O$.$2SiO_2$). It was found that the crystal nucleation rate of glass (19.5% $Li_2P$-80.5% $SiO_2$), the nearest composition to lithium disilicate, was higher than other glasses. The opalescence caused by phase separation was observed in the nucleation heat treated glass (16.3% $Li_2O$-83.7% $SiO_2$). The result from nucleation density measurement of this glass indicated that the nucleation was enhanced during early stage of phase separation. The molphologies of crystals in glasses and crystal growth rate at $600^{\circ}C$ were also discussed.

  • PDF

졸-겔법으로 제조된 $xTiO_2$-$ySiO_2$ 분말에 의한 유기물의 광분해 (Photocatalytic Degradation of Organic Compounds over $xTiO_2$-$ySiO_2$ Powders Prepared by Sol-Gel Method)

  • 양천회;이봉철
    • 한국응용과학기술학회지
    • /
    • 제25권2호
    • /
    • pp.130-136
    • /
    • 2008
  • $xTiO_2$-$ySiO_2$ system photocatalysts were developed by sol-gel method based on the change of production parameters, and their structure of crystallization and the specific surface area were measured. Considering the efficiency of the ethanol and phenol degradation using the catalyst, the conclusions were obtained as follows: By means of X-ray analysis of $xTiO_2$-$ySiO_2$ powder that is obtained from Titanium and Silicon alkoxide by sol-gel process, it is shown that crystal structure of anatase type is a dominating structure and, on the other hand, the structure of rutile also partly exists. The increase of $SiO_2$ contents causes the decrease of the degree of crystallization of the gel, whereas the specific surface area preferentially increases. It is shown that more than 90% of ethanol and phenol are degraded when reaction time is about three and an hours, and the maximum degradation rate of ethanol and phenol is shown in $60TiO_2$-$40SiO_2$ catalyst.

Excimer Laser Annealing 결정화 방법 및 고유전 게이트 절연막을 사용한 poly-Si TFT의 특성 (Characteristics of poly-Si TFTs using Excimer Laser Annealing Crystallization and high-k Gate Dielectrics)

  • 이우현;조원주
    • 한국전기전자재료학회논문지
    • /
    • 제21권1호
    • /
    • pp.1-4
    • /
    • 2008
  • The electrical characteristics of polycrystalline silicon (poly-Si) thin film transistor (TFT) crystallized by excimer laser annealing (ELA) method were evaluated, The polycrystalline silicon thin-film transistor (poly-Si TFT) has higher electric field-effect-mobility and larger drivability than the amorphous silicon TFT. However, to poly-Si TFT's using conventional processes, the temperature must be very high. For this reason, an amorphous silicon film on a buried oxide was crystallized by annealing with a KrF excimer laser (248 nm)to fabricate a poly-Si film at low temperature. Then, High permittivity $HfO_2$ of 20 nm as the gate-insulator was deposited by atomic layer deposition (ALD) to low temperature process. In addition, the solid phase crystallization (SPC) was compared to the ELA method as a crystallization technique of amorphous-silicon film. As a result, the crystallinity and surface roughness of poly-Si crystallized by ELA method was superior to the SPC method. Also, we obtained excellent device characteristics from the Poly-Si TFT fabricated by the ELA crystallization method.

$CaO-MgO-Al_{2}O_{3}-SiO_{2}-P_{2}O_{5}$계 Bioglass-Ceramic의 결정화 조건에 따른 기계적 성질 및 생체적합성에 관한 연구 (MECHANICAL PROPERTIES AND BIOCOMPATIBILITY WITH CRYSTALLIZATION CONDITIONS OF $CaO-MgO-Al_{2}O_{3}-SiO_{2}-P_{2}O_{5}$ BIOGLASS-CERAMIC SYSTEM)

  • 최현미;이민호;배태성;박찬운
    • 대한치과보철학회지
    • /
    • 제34권1호
    • /
    • pp.169-186
    • /
    • 1996
  • The purpose of this study was to investigate the mechanical properities and biocompatibility with crystallization temperature and time of a bioactive glass-ceramic system $41.4wt%SiO_{2}-35.0wt%CaO-3.0wt%MgO-12.0wt%P_{2}O_{5}-8.6wt%Al_{2}O_{3}$ with same molar percent of $Al_{2}O_{3}\;and\;P_{2}O_{5}$. The crystallization behaviors were investigated with DTA, XRD and SEM. Fracture toughness with the change of crystallization temperature and time was measured by indentation fracture method. Also, biocompatibility was evaluated by culture of mouse fibroblast cell line L929. The results obtained were as follows ; 1. The major crystalline phases were apatite and anorthite, and relative intensity of anorthite phase was increased at $1004^{\circ}C$. 2. The hardness and fracture toughness were gradually increased with the increase in ceraming temperature to $1004^{\circ}C$. 3. When the glass ceramic was heat-treated for 4 hours at ceraming temperature of $1004^{\circ}C$, hardness and fracture toughness showed the maximum values $578.84k/mm^2\;and\;2.07MPa\;m^{1/2}$, respectively. 4. The growth rate and cytotoxic of L929 fibroblast cells for bioactive glass ceramic were better than those of stainless steel and titanium.

  • PDF

Dependence of Thermal Properties on Crystallization Behavior of CaMgSi2O6 Glass-Ceramics

  • Jeon, Chang-Jun;Yeo, Won-Jae;Kim, Eung-Soo
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.686-691
    • /
    • 2009
  • The effects of thermal properties on the crystallization behavior of $CaMgSi_2O_6$ glass-ceramics were investigated as a function of sintering temperature from 800$^{\circ}C$ to 900$^{\circ}C$. The crystallization behavior of the specimens depended on the sintering temperature, which could be evaluated from the differential thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. With increasing sintering temperature, the thermal conductivity of the sintered specimens increased, while the coefficient of thermal expansion (CTE) of the sintered specimens decreased. These results could be attributed to the increase of crystallization, confirmed from the estimation by density measurements. Also, the thermal diffusivity and specific heat capacity of the sintered specimens were discussed with relation to the sintering temperature. Typically, a thermal conductivity of 3.084 $W/m^{\circ}C$, CTE of 8.049 $ppm/^{\circ}C$, thermal diffusivity of 1.389 $mm^2/s$ and specific heat capacity of 0.752 $J/g^{\circ}C$ were obtained for $CaMgSi_2O_6$ specimens sintered at 900$^{\circ}C$ for 5 h.