• Title/Summary/Keyword: $SiC_p$(SiC particle)

Search Result 91, Processing Time 0.025 seconds

Electrical Properties of Bi-doped Apatite-type Lanthanum Silicates Materials for SOFCs (중·저온 영역 SOFC용 고체 전해질로의 응용을 위한 Bi가 첨가된 아파타이트형 란타늄 실리케이트의 전기적 특성)

  • Kim, Dae-Young;Jeong, Gwang-Ho;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.6
    • /
    • pp.486-490
    • /
    • 2012
  • $La_{7.33}Bi_2(SiO_4)_6O_2$ specimens were fabricated by standard solid-state synthesis route for solid oxide electrolytes. The calcined powders exhibited uniform particles with a mean particle size of about $28{\mu}m$. The room-temperature structure of $La_{7.33}Bi_2(SiO_4)_6O_2$ specimens was analyzed as hexagonal, space group P63 or P63/m, and the unit cell volume increased with increase a sintering temperature. The specimens sintered at $1,175^{\circ}C$ showed X-ray patterns of homogeneous apatite single phase without the second phase such as $La_2Si_2O_7$ and $La_2SiO_5$. The specimen sintered at $1,175^{\circ}C$ showed the maximum sintered density of 5.49 $g/cm^3$. Increasing the sintering temperature, total conductivities increased, activation energy decreased and the values were $1.98{\times}10^{-5}Scm-1$ and 1.23 eV, respectively.

PRODUCTION AND MACHINABILITY OF SiCp-REINFORCED AL-2014 ALLOY MATRIX COMPOSITES

  • Ciftci, I.;Sahin, Y.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.313-314
    • /
    • 2002
  • SiCp-reinforced metal matrix composites (MMCs) containing 8 wt % and 16 wt % of $SiC_p-reinforced$ with 30 and $45\;{\mu}m$ in sizes were prepared by a melt stirring-squeeze casting technique. Microstructural observation showed that particle distributions were reasonably well. Turning experiments were carried out on the composites using uncoated and triple-layer coated carbide tools at various cutting speeds under a constant feed rate and depth of cut. Coated tools indicated better performance than uncoated tools for all the materials while the poor surface finish was obtained for coated tools.

  • PDF

Preparation of Microporous Silica Membrane from TEOS-$H_2O$ System and Separation Of $H_2$-$N_2$ Gas Mixture (TEOS-$H_2O$계로부터 다공성 실리카 막의 제조 및 수소-질소 혼합기체의 분리)

  • 강태범;이현경;이용택
    • Membrane Journal
    • /
    • v.10 no.2
    • /
    • pp.55-65
    • /
    • 2000
  • The porous silica membrane was prepared from Si(${OC}_2H_5)_4-H_2O$ system by sol-gel method. To investigate the characteristics of gels and porous silica membrane, we examined gels and porous silica membrane using TG-DTA, X-ray diffractometer, IR spectrophotometer, BET, SEM and TEM. The optimum mole ratio of Si(OC$_2$H$_{5}$)$_4$ : $H_2O$ $C_2$H$_{5}$OH for porous silica membrane was 1 : 4.5 : 4. The porous silica membrane was obtained by heat treatment of the gel above 700 $^{\circ}C$. The specific surface area of sintered gel was 3.8 $m^2$/g to 902.3 $m^2$/g at 100 $^{\circ}C$ to 1100 $^{\circ}C$ The pore size of sintered gel was in the range 20 $\AA$~ 50$\AA$. The particle size of sintered gel was 15 nm to 30 nm at 30$0^{\circ}C$ to 700$^{\circ}C$. The performance of the porous silica membrane was investigated for the separation of $H_2$/$N_2$ gas mixture. Gas separation through porous silica membrane depends upon Knudsen flow and surface flow. The veal separation factor($\alpha$) of $H_2$/$N_2$ was 5.17 at 155.15 cmHg and $25^{\circ}C$. The real separation factor($\alpha$), head separation factor($\beta$), and tail separation factor( $\bar{B}$) increased as the pressure of permeation cell Increased.sed.

  • PDF

MEASUREMENT OF THE D-D NEUTRON GENERATION RATE BY PROTON COUNTING

  • Kim, In-Jung;Jung, Nam-Suk;Choi, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • A detection system was set up to measure the neutron generation rate of a recently developed D-D neutron generator. The system is composed of a Si detector, He-3 detector, and electronics for pulse height analysis. The neutron generation rate was measured by counting protons using the Si detector, and the data was crosschecked by counting neutrons with the He-3 detector. The efficiencies of the Si and He-3 detectors were calibrated independently by using a standard alpha particle source $^{241}Am$ and a bare isotopic neutron source $^{252}Cf$, respectively. The effect of the cross-sectional difference between the D(d,p)T and $D(d,n)^3He$ reactions was evaluated for the case of a thick target. The neutron generation rate was theoretically corrected for the anisotropic emission of protons and neutrons in the D-D reactions. The attenuations of neutron on the path to the He-3 detector by the target assembly and vacuum flange of the neutron generator were considered by the Monte Carlo method using the MCNP 4C2 code. As a result, the neutron generation rate based on the Si detector measurement was determined with a relative uncertainty of ${\pm}5%$, and the two rates measured by both detectors corroborated within 20%.

Selective Contact Hole Filling by Electroless Ni Plating (무전해Ni도금에 의한 선택적 CONTACT HOLE 충진)

  • 김영기;우찬희;박종완;이원해
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05b
    • /
    • pp.26-27
    • /
    • 1992
  • The effect of activation and electroless nickel plating conditions on contact properties were investigated for selective electroless nickel plating of Si farers in order to obtain an optimum condition of contact hole filling. According to RCA prosess, p-type si 1 icon (100) surface was cleaned out and activated. The effects of temperture, DMAB concentration, time, and stirring iwere investigated for activation of p-type Si(100) surface. The optimal activation condition obtained was 0.5M HF, 1mM PdCl$_2$, 2mM EDTA, 7$0^{\circ}C$, 90sec under ultrasonic vibration. In electroless nickel plating, the effect of temperature, DMAB concentration, pH, and plating ti me were studied. The optimal plating condition found was 0. 10M NiS0$_4$.$H_2O$, 0.lIM Citrate, pH 6.8, 6$0^{\circ}C$, 30 minutes. The contact resistence of fi]ms wascomparatively low. It took 30 minutes to obtain 1$\mu$m thick film with 8$\mu$M DMAB concentration. The film surface roughness was improved with increasing temperature and decreasing pH of the plating solution. The best quality of the film was obtained with the condition of temperature 6$0^{\circ}C$ and pH 6.8. The micro-victors hardness of film was about 600Hv and was decreased wi th increasing particle size of plating layer.

  • PDF

Synthesis of Monodispersed and Spherical $SiO_2-coated Fe_2O_3$ Nanoparticle

  • Han, Yang Su;Yun, Seon Mi;Kim, Dong Guk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.12
    • /
    • pp.1193-1198
    • /
    • 2000
  • The preparation of nanocrystalline hematite, ${\alpha}-Fe_2O_3$, paricles and their surface coating with silica layers are described. The hematite particles with the size of 30~60 nm are firstly prepared by thermal decomposition of trinuclear acetate-hydroxo iron (III) nitrate complex, $[Fe_3$(OCOCH_3)_7$OH${\cdot}$2H_2O]NO_3$, at $400^{\circ}C$. Subsequently the hematite surfaces are coated with siliva layers by a controlled hydrolysis and condensation reaction of TEOS with varying the TEOS concentration and pH. Monodispersed and spherical $SiO_2-coatedFe_2O_3$ particles with the average particle diameter of ~90 nm and extremely narrow size distribution can be obtained at the pH of 11 and the TEOS concentration of 0.68M, which are found to be the optimum conditions in the present study in achieving the homogeneous deposition of silica layers on hematite surfaces. Diffuse reflectance UV-Vis spectra reveal that the characteristic optical reflectance of ${\alpha}-Fe_2O_3$ particles is preserved almost constant even after coating the surfaces, suggesting that the $SiO_2$ layers can be regarded as protecting layers without degrading the optical properties of hematite particles.

Preparation of Zinc Oxide by Hydrothermal Precipitation and Degradation of Tartrazine (수열 합성법에 의한 Zinc Oxide의 제조 및 Tartrazine 분해 특성)

  • Na, Seok-Eun;Jeong, Sang-Gu;Jeong, Ga-Seop;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.752-757
    • /
    • 2011
  • The effects of reaction temperature, reactant concentration, pH of solution and mixing order of reactants on the particle shape and size distribution of zinc oxide were investigated in the preparation of zinc oxide from ammonium hydroxide and zinc acetate by the method of aqueous hydrothermal precipitation method, and the photocatalytic ability of zinc oxide synthesized was measured from the degradation of tartrazine under UV irradiation. The average particle size was increased with pH of solution but decreased with zinc acetate concentration and reaction temperature. The optimum condition for the synthesis of minimum sized zinc oxide was pH 11.2, concentration of zinc acetate 0.6 M and reaction temperature $90^{\circ}C$, and its average particle size was 3.133 ${\mu}$m. 97% of tartrazine was degraded by zinc oxide in sixty minutes.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Synthesis of Kaolinitic Clay Mineral from Amorphous Alumino-Silicate by Hydrothermal Process (비정질 Alumino-Silicate로부터 수열반응에 의한 Kaolinite질 인공점토의 합성에 관한 연구)

  • 김남일;박계혁;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1076-1086
    • /
    • 1994
  • This study covers synthetic effect of the various hydrothermal treatments on formation of artificially made kaolinite mineral. The hydrothermal treatment includes the temperature treatment with time duration, addition of seeds, particle size of the starting material used, pH variation and the different types of organic acids. A colloidal silica and alumina sol which are commercially available are used for this study. A colloidal silica and alumina sol are mixed by the atomic ratio of Al/Si = 1, based on the theoretical kaolinite composition and calcined at $600^{\circ}C$ for 8 hours duration. It was found that the kaolinitic clay mineral was well developed; thereby, the different patterns of crystalline mineral are appeared. Spherical type as a crystal form was distinctively formed at the temperature of 20$0^{\circ}C$ to 25$0^{\circ}C$ with short duration time, while platy type as a crystal was highly yielded at 300~35$0^{\circ}C$. Moreover, by adding more than 20 wt% of seed as the natural kaolinitic clay to the starting material is widely distributed and developed when 2 ${\mu}{\textrm}{m}$ or less particle size of the starting material is used; also, when they are heat-treated at the temperature of 25$0^{\circ}C$ with 5 hours duration. With respect of the effect of pH variation on formation of the synthetic kaolinite minerals, the crystalline minerals are highly yielded at less than pH 2 and gradually diminished at more than pH9. Regarding to the effect of different acids on development of the kaolinite mineral, the organic acids with high chelating capacity produces good formation of crystalline minerals; whereas, amine radical-(NH2) is not an effective agent to generate the crystalline minerals.

  • PDF

Dissolution Characteristics of Magnesite Ore in Hydrochloric Acid Solution and Removal of Impurity (마그네사이트 광석(鑛石)의 염산용해(鹽酸熔解) 특성(特性) 및 불순물(不純物) 제거)

  • Eom, Hyoung-Choon;Park, Hyung-Kyu;Kim, Chul-Joo;Kim, Sung-Don;Yoon, Ho-Sung
    • Resources Recycling
    • /
    • v.18 no.6
    • /
    • pp.38-45
    • /
    • 2009
  • Dissolution characteristics of magnesite ore in hydrochloric acid solution and removal of impurity were investigated. The dissolution yield increased with increasing temperature and with decreasing particle size. The optimum conditions for dissolution were found to be reaction period of 120 min, reaction temperature of $80^{\circ}C$ and mean particle size of 100. Under optimal dissolution condition the extraction of Mg was 98%. It was found that most of Si and Al exist in the residue, and they can be removed by filtering. Dissolved impurity ions were precipitated as metal hydroxides by pH adjustment. Polymers were used as coagulants for metal hydroxides and the suitable coagulant dosage was 1mg/100ml of non-ionic polymer.