• 제목/요약/키워드: $Schr\"{o}dinger$ operator

검색결과 17건 처리시간 0.023초

ABSOLUTE CONTINUITY OF THE MAGNETIC SCHRÖDINGER OPERATOR WITH PERIODIC POTENTIAL

  • Assel, Rachid
    • Korean Journal of Mathematics
    • /
    • 제26권4호
    • /
    • pp.601-614
    • /
    • 2018
  • We consider the magnetic $Schr{\ddot{o}}dinger$ operator coupled with two different potentials. One of them is a harmonic oscillator and the other is a periodic potential. We give some periodic potential classes for which the operator has purely absolutely continuous spectrum. We also prove that for strong magnetic field or large coupling constant, there are open gaps in the spectrum and we give a lower bound on their number.

BOUNDED SOLUTIONS FOR THE $SCHRËDINGER OPERATOR ON RIEMANNIAN MANIFOLDS

  • Kim, Seok-Woo;Lee, Yong-Hah
    • 대한수학회보
    • /
    • 제44권3호
    • /
    • pp.507-516
    • /
    • 2007
  • Let M be a complete Riemannian manifold and L be a $Schr\"{o}dinger$ operator on M. We prove that if M has finitely many L-nonparabolic ends, then the space of bounded L-harmonic functions on M has the same dimension as the sum of dimensions of the spaces of bounded L-harmonic functions on the L-nonparabolic end, which vanish at the boundary of the end.

ROUGH ISOMETRY AND THE SPACE OF BOUNDED ENERGY FINITE SOLUTIONS OF THE SCHRODINGER OPERATOR ON GRAPHS

  • Kim, Seok-Woo;Lee, Yong-Hah;Yoon, Joung-Hahn
    • 대한수학회논문집
    • /
    • 제25권4호
    • /
    • pp.609-614
    • /
    • 2010
  • We prove that if graphs of bounded degree are roughly isometric to each other, then the spaces of bounded energy finite solutions of the Schr$\ddot{o}$dinger operator on the graphs are isomorphic to each other. This is a direct generalization of the results of Soardi [5] and of Lee [3].

Lp ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP

  • Yu, Liu
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.425-443
    • /
    • 2010
  • We investigate the Schr$\ddot{o}$dinger type operator $H_2\;=\;(-\Delta_{\mathbb{H}^n})^2+V^2$ on the Heisenberg group $\mathbb{H}^n$, where $\Delta_{\mathbb{H}^n}$ is the sublaplacian and the nonnegative potential V belongs to the reverse H$\ddot{o}$lder class $B_q$ for $q\geq\frac{Q}{2}$, where Q is the homogeneous dimension of $\mathbb{H}^n$. We shall establish the estimates of the fundamental solution for the operator $H_2$ and obtain the $L^p$ estimates for the operator $\nabla^4_{\mathbb{H}^n}H^{-1}_2$, where $\nabla_{\mathbb{H}^n}$ is the gradient operator on $\mathbb{H}^n$.

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.

UNIQUE CONTINUATION FOR SCHRӦDINGER EQUATIONS

  • Shin, Se Chul;Lee, Kyung Bok
    • 충청수학회지
    • /
    • 제15권2호
    • /
    • pp.25-34
    • /
    • 2003
  • We prove a local unique continuation for Schr$\ddot{o}$dinger equations with time independent coefficients. The method of proof combines a technique of Fourier-Gauss transformation and a Carleman inequality for parabolic operator.

  • PDF

EIGENVALUE INEQUALITIES OF THE SCHRÖDINGER-TYPE OPERATOR ON BOUNDED DOMAINS IN STRICTLY PSEUDOCONVEX CR MANIFOLDS

  • Du, Feng;Li, Yanli;Mao, Jing
    • 대한수학회보
    • /
    • 제52권1호
    • /
    • pp.223-228
    • /
    • 2015
  • In this paper, we study the eigenvalue problem of Schr$\ddot{o}$dinger-type operator on bounded domains in strictly pseudoconvex CR manifolds and obtain some universal inequalities for lower order eigenvalues. Moreover, we will give some generalized Reilly-type inequalities of the first nonzero eigenvalue of the sub-Laplacian on a compact strictly pseudoconvex CR manifold without boundary.

이종 구조에서 위치의 함수로 표시된 효과질량을 포함하는 Schrodinger 방정식을 위치에 무관한 효과질량을 포함하는 방정식으로 변환하는 방법 및 그 응용 (Method of converting schrodinger equation for heterostructures with a positon-dependent effective mass to the equation with a position-independent effective mass and its appliations)

  • 이병호;이욱
    • 전자공학회논문지A
    • /
    • 제33A권7호
    • /
    • pp.223-229
    • /
    • 1996
  • a simpel coordinate transformaton method is suggested that converts Schr$\"{o}$dinger's equation involving a position-dependent effective mass in a heterostructure to an equation involving a positon-independent effective mass. This method enables the conceptual study of the effect of the positon-dependent effective mass inserted between the divergence operator and the gradient operator in Schr$\"{o}$dinger's equation. It is also shown that the characteristics such as a transmission coefficient in various heterostructures involving a position-dependent effective masses can be obtained iwth ease by the suggested method.

  • PDF

ALTERNATIVE PROOF OF EXISTENCE THEOREM FOR CERTAIN COMPETITION MODELS

  • Ahn, Inkyung
    • 충청수학회지
    • /
    • 제13권1호
    • /
    • pp.119-130
    • /
    • 2000
  • We give alternative proof of the existence theorem for certain elliptic systems describing competing interactions with nonlinear di usion. The existence of positive solution depends on the sign of the principal eigenvalue of suitable operators of Schr$\ddot{o}$dinger type. If the sign of such operators are both positive, then system has a positive solution. The main tool employed is the fixed point index of compact operator on positive cones.

  • PDF