• Title/Summary/Keyword: $S_N2-S_N2'$ Reaction

Search Result 1,098, Processing Time 0.023 seconds

Interface characteristics of Cu/TiN system by XPS (XPS를 이용한 Cu/TiN의 계면에 관한 연구)

  • 이연승;임관용;정용덕;최범식;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.314-320
    • /
    • 1997
  • A chemical reaction and electronic structure change at the interface between copper and titanium nitride were investigated by XPS. A thin Cu layer was deposited on a TiN substrate oxidized by exposure to air at room temperature. We observed the Ti(2p), O(1s), N(1s), Cu(2p) core-level, and Cu LMM Auger line spectra. With increasing of the thickness of Cu layer, these spectra do not show any changes in the line shape as well as in peak position. In addition, the valence band spectra in XPS do not show any changes, which indicates that Cu does not react with Ti, N, and O. This inreactivity of Cu might cause a poor adhesion between Cu and TiN.

  • PDF

Kinetics and Mechanism of the Hydrolysis of Imidoyl Halides (Imidoyl Halide의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Tae-Rin Kim;Jin-Hee Kim;Byung-Doo Chang;Kwang-Il Lee;Ung-Cho Kim
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.48-55
    • /
    • 1976
  • The rate constants of the derivatives of N-(2,4-dinitrophenyl)-benzimidoyl chloride were determined at various pH and a rate equation which can be applied over wide pH range was obtained. The reaction mechanism of hydrolysis of N-(2,4-dinitrophenyl)-benzimidoyl chloride which has not been studied carefully earlier in acidic and basic solution can be fullly explained by the rate equation obtained. The rate equation reveals that, beow pH 7.00, the hydrolysis of benzimidoyl chloride proceeds through $S_N2$ reaction to form a carbonium ion intermediate.Above pH 8.5, however, the hydrolysis proceeds through the $S_N2$ type reaction which depends on hydroxide ion and imidoyl chloride concentration. At pH 7.0∼8.5, two reactions occur competitively.

  • PDF

Nucleophilic Substitution at a Carbonyl Carbon Atom (VII). Kinetic Studies on the Sovolysis of 2-Thenoyl Chloride in Binary Mixtures of Acetone-Water and Ethanol-Water (카르보닐 탄소원자의 친핵성 치환반응 (제7보). 물-에탄올 및 물-아세톤 혼합용매속에서 2-염화테노일의 가용매 분해반응)

  • Sohn, Jin Eon;Yoon, Sang Kee;Lee, Ik Choon
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.333-339
    • /
    • 1976
  • The rates of solvolysis for 2-thenoyl chloride have been measured in aqueous acetone and aqueous ethanol at various temperatures ranging from 20 to $40^{circ}C$. The activation parameters and the Grundwald-Winstein's slope are determined by the analysis of solvolysis rates. The results indicated that the reaction rates of solvolysis are considerably slower than those of the reaction for benzoyl chloride due to the electron donating effect of thiophene nucleus. The results also showed that the reaction proceeds with the $S_N1$ mechanism in water-rich solvents whereas the $S_N2$ character increases with the decrease of water content, and overall reaction is subject to entropy control.

  • PDF

SEPARATION OF GAMMA-RAYS PRODUCTION FROM $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ REACTIONS USING DOPPLER SHIFT EFFECT

  • Kim, Y.K.;Ha, J.H.;Youn, M.;Han, S.H.;Chung, C.E.;Moon, B.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.3
    • /
    • pp.287-290
    • /
    • 2001
  • The 9.17MeV gamma-rays from the $^{13}C(p,\;{\gamma})^{14}N,\;^{14}N({\gamma},\;{\gamma})^{14}N$ reactions were measured. The incident 9.17MeV gamma-ray was produced from the $^{13}C(p,\;{\gamma})^{14}N$ reaction at Ep=1.75MeV resonance. The 1.75MeV proton beam was accelerated using the 3MV SNU-AMS Tandetron and 1.7MV KIGAM Tandem accelerators. The enriched 13C target was $121{\mu}g/cm^2$ self-supporting foil, and we used liquid nitrogen as a resonant absorption target. We used a HP-Ge detector with 30% efficiency and less 2keV energy resolution. We developed new method to detect the scattered 9.17MeV gamma-ray from the nitrogen target by using the energy difference between the Doppler shifted gamma-ray from the $^{13}C(p,\;{\gamma})^{14}N$ reaction and the resonant absorbed and rescattered gamma-ray from the $^{14}N({\gamma},\;{\gamma})^{14}N$ reaction.

  • PDF

Synthesis and Crystal Structure of Cobalt(III) Complex with Chiral Pentadentate Bis-Amide Ligand, 1,9-bis(S)-pyrrolidinyl-2,5,8-triazanonane-1,9-dione$(S,S-prodienH_2)$

  • 이배욱;오창언;도명기
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.4
    • /
    • pp.457-462
    • /
    • 1998
  • A chiral pentadentate bis-amide ligand, 1,9-bis(S)-pyrrolidinyl-2,5,8-triazanonane-1,9-dio ne$(S,S-prodienH_2)$ has been synthesized from the reaction of bis(2-aminoethyl)amine(dien) and S-proline, and the structure of $[Co(S,S-prodien)H_2O]ClO_4$ has be en determined by single crystal X-ray diffraction. The geometrical structure of the Co(III) complex has been an αβ -form, where the dien moiety of ligand chelates to a facial in metal center, and the aqua ligand coordinates a cis site to the secondary nitrogen of dien. The Co-N(1), Co-N(3) distances of two amide moiety in S,S-prodien are shorter than the other Co-N(2), Co-N(4), and Co-N(5) distances because of the increased basicity of nitrogen in amide. The complex crystallizes in the monoclinic space group $P2_1$(#4), with a=7.838(1), b=12.675(1), c=9.710(1) Å, β=100.39(1) and z=2. Refinement gives the final R and $R_w$ values of 0.045 and 0.057, respectively for 2130 observed reflections. Based upon the CD and X-ray data, it is identified that the absolute configuration of the αβ -$[Co(S,S-prodien)H_2O]ClO_4$ has a Λ-form.

Synthesis and Characterization of Gallium Nitride Powders and Nanowires Using Ga(S2CNR2)3(R = CH3, C2H5) Complexes as New Precursors

  • Jung, Woo-Sik;Ra, Choon-Sup;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Gallium nitride (GaN) powders and nanowires were prepared by using tris(N,N-dimethyldithiocarbamato)gallium(III) (Ga(DmDTC)$_3$) and tris(N,N-diethyldithiocarbamato)gallium(III) (Ga(DeDTC)$_3$) as new precursors. The GaN powders were obtained by reaction of the complexes with ammonia in the temperature ranging from 500 to 1100 ${^{\circ}C}$. The process of conversion of the complexes to GaN was monitored by their weight loss, XRD, and $^{71}$Ga magic-angle spinning (MAS) NMR spectroscopy. Most likely the complexes decompose to $\gamma$ -Ga$_2$S$_3$ and then turn into GaN via amorphous gallium thionitrides (GaS$_x$N$_y$). The reactivity of Ga(DmDTC)$_3$ with ammonia was a little higher than that of Ga(DeDTC)$_3$. Room-temperature photoluminescence spectra of asprepared GaN powders exhibited the band-edge emission of GaN at 363 nm. GaN nanowires were obtained by nitridation of as-ground $\gamma$ -Ga$_2$S$_3$ powders to GaN powders, followed by sublimation without using templates or catalysts.

Comparative Reaction Characteristics of Methane Selective Catalytic Reduction with CO Generation Effect in the N2O Decomposition over Mixed Metal Oxide Catalysts (MMO 촉매 하에서 N2O 분해에 대한 메탄 SCR 반응 및 CO 생성 효과의 비교 연구)

  • Park, Sun Joo;Park, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.624-628
    • /
    • 2008
  • Nitrous oxide ($N_2O$), known as one of the major greenhouse gases, is an important component of the earth's atmosphere, and gives rise to precursor of acid rain and photochemical smog. For the removal of $N_2O$ and other nitrogen oxides, the SCR reaction system with various reductants is widely used. This study is based on the results of experimental and theoretical examinations on the catalytic decomposition of sole nitrous oxide ($N_2O$) and selective catalytic reduction of $N_2O$ with $CH_4$ in the presence of oxygen using mixed metal oxide catalysts obtained from hydrolatcite-type precursors. When $CH_4$ is fed together with a reductant, it affects positively on the $N_2O$ decomposition activity. At an optimum ratio of $CH_4$ to $O_2$ mole ratio, the $N_2O$ conversion activity is enhanced on the SCR reaction with partial oxidation of methane.

Study on the Facile Preparation of S-2-(${\omega}$-aminoalkylamino) ethyl Dihydrogen Phosphorothioates (티오인산이수소 S-2-(${\omega}$-아미노알킬아미노) 에틸들의 간편합성법 연구)

  • You Sun Kim;Suc Won Kim
    • Journal of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.449-456
    • /
    • 1983
  • The facile route of preparing S-2-(${\omega}$-aminoalkylamino) ethyl dihydrogen phosphorothioates, potential chemical radioprotectants, have been studied. Intermediate 3-(2-phthalimidoethyl)-2-oxazolidinone was prepared by a reaction of potassium phthalimide and 3-(2-bromoethyl)-2-oxazolidinone, which was obtained through the alkaline ring closure of a mixture of carbonate and 2,2'-dibromo diethylamine prepared from diethanolamine. This was converted to N-[2-(2-bromoethylamino)ethyl] phthalimide hydrobromide by 30% HBr(gas) in acetic acid and N-(2-bromoethyl)-1,2-ethanediamine dihydrobromide was obtained by reacting the hydrobromide with a solution of HBr-HOAc. N-(2-bromoethyl)-1,3-propanediamine dihydrobromide could be prepared through the Cortese treatment of 2-(3-aminopropylamino) ethanol, which was prepared by a reaction of 1,3-diaminopropane and 2-chloroethanol. These dihydrobromides were treated by sodium thiophosphate in DMF to result S-2-(${\omega}$-aminoalkylamino) ethyl dihydrogen phosphorothioates. The characteristics of each reaction path were discussed in regards to reaction conditions and overall yields and a facile route of preparing each derivative was proposed.

  • PDF

Electrochemical Reduction on the -S-N= Bond of N-Oxyldiethylenebenzothiazole-2-sulfenamide (N-Oxyldiethylenebenzothiazole-2-sulfenamide의 -S-N= 결합에 대한 전기화학적 환원)

  • Kim, Hae-Jin;Jung , Keun-Ho;Choi, Qw-Won;Kim, Il-Kwang;Leem, Sun-Young
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.680-688
    • /
    • 1991
  • The electrochemical reduction of N-oxyldiethylenebenzothiazole-2-sulfenamide (ODBS; vulcanization accelerator) was investigated by direct current polarography, differential pulse polarography, cyclic voltammetry and controlled potential coulometry. The irreversible electrode reduction of ODBS proceeded E-C-E-C reaction mechanism by three electrons transfer with irreversible one wave (-1.86 volts vs. Ag/0.1 M AgN$O_3$ in AN). As the results of controlled potential electrolysis, mercaptobenzothiazole (MBT), benzothiazole disulfide (MBT dimer) and extricated sulfur were products which followed by cleavage of the sulfenamide (-S-N=) bond. Upo the basis of products analysis and polarogram interpretation witli pH variable, electrochemical reaction mechanism was suggested.

  • PDF