• Title/Summary/Keyword: $S_N2'$-$S_NAr$ reaction

Search Result 6, Processing Time 0.021 seconds

Theoretical Studies on the Gas-Phase Nucleophilic Aromatic Substitution Reaction

  • Lee, Ik-Choon;Park, Hyoung-Yeon;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.658-661
    • /
    • 1991
  • The gas-phase nucleophilic substitution reaction of pentafluoroanisole with $OH^-$ and ${NH_2}^-$ nucleophiles have been studied theoretically using the AM1 method. Three reaction channels, $S_N2$, IPSO and $S_NAr$ (scheme 1), are all very exothermic so that all are accessible despite the varying central energy barriers which are much lower than the reactants level. In the IPSO and $S_NAr$ channels, the reactants form directly a stable ,${\sigma}$-anion complex which proceeds to form a proton transfer complex via a transition barrier corresponding to a loose ${\pi}$-type complex with the F-(or ${OCH_3}^-$) leaving group. Due to a greater number of probable reaction sites available for $S_NAr$ compared to the other two processes, the $S_NAr$ channel is favored as experimentally observed.

The α-Effect in SNAr Reaction of 1-Fluoro-2,4-dinitrobenzene with Hydrazine: Ground-State Destabilization versus Transition-State Stabilization

  • Cho, Hyo-Jin;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2371-2374
    • /
    • 2014
  • A kinetic study is reported on SNAr reaction of 1-fluoro-2,4-dinitrobenzene with a series of primary amines including hydrazine in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{obsd}$ vs. [amine] are linear and pass through the origin, indicating that general-base catalysis by a second amine molecule is absent. The Br${\o}$nsted-type plot exhibits an excellent linear correlation with ${\beta}_{nuc}$ = 0.46 when hydrazine is excluded from the correlation. The reaction has been suggested to proceed through a stepwise mechanism, in which expulsion of the leaving group occurs after the rate-determining step (RDS). Hydrazine is ca. 10 times more reactive than similarly basic glycylglycine (i.e., the ${\alpha}$-effect). A five-membered cyclic intermediate has been suggested for the reaction with hydrazine, in which intramolecular H-bonding interactions would facilitate expulsion of the leaving group. However, the enhanced leaving-group ability is not responsible for the ${\alpha}$-effect shown by hydrazine because expulsion of the leaving group occurs after RDS. Destabilization of the ground-state of hydrazine through the electronic repulsion between the nonbonding electron pairs is responsible for the ${\alpha}$-effect found in the current $S_NAr$ reaction.

The α-Effect in SNAr Reaction of Y-Substituted-Phenoxy-2,4-Dinitrobenzenes with Amines: Reaction Mechanism and Origin of the α-Effect

  • Cho, Hyo-Jin;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2448-2452
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for $S_NAr$ reactions of Y-substituted-phenoxy-2,4-dinitrobenzenes (1a-1g) with hydrazine and glycylglycine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Hydrazine is 14.6-23.4 times more reactive than glycylglycine. The magnitude of the ${\alpha}$-effect increases linearly as the substituent Y becomes a stronger electron-withdrawing group (EWG). The Br${\o}$nsted-type plots for the reactions with hydrazine and glycylglycine are linear with ${\beta}_{lg}=-0.21$ and -0.14, respectively, which is typical for reactions reported previously to proceed through a stepwise mechanism with expulsion of the leaving group occurring after rate-determining step (RDS). The Hammett plots correlated with ${\sigma}^{\circ}$ constants result in much better linear correlations than ${\sigma}^-$ constants, indicating that expulsion of the leaving group is not advanced in the transition state (TS). The reaction of 1a-1g with hydrazine has been proposed to proceed through a five-membered cyclic intermediate ($T_{III}$), which is structurally not possible for the reaction with glycylglycine. Stabilization of the intermediate $T_{III}$ through intramolecular H-bonding interaction has been suggested as an origin of the ${\alpha}$-effect exhibited by hydrazine.

Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol

  • Kim, Min-Young;Ha, Gyu Ho;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2438-2442
    • /
    • 2014
  • A kinetic study is reported for $S_NAr$ reaction of 1-fluoro-2,4-dinitrobenzene (5a) and 1-chloro-2,4-dinitrobenzene (5b) with alkali-metal ethoxides (EtOM, M = Li, Na, K and 18-crown-6-ether complexed K) in anhydrous ethanol. The second-order rate constant increases in the order $k_{EtOLi}$ < $k_{EtO^-}$ < $k_{EtONa}$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for the reaction of 5a and $k_{EtOLi}$ < $k_{EtONa}$ < $k_{EtO^-$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for that of 5b. This indicates that $M^+$ ion behaves as a catalyst or an inhibitor depending on the size of $M^+$ ion and the nature of the leaving group ($F^-$ vs. $Cl^-$). Substrate 5a is more reactive than 5b, although the $F^-$ in 5a is ca. $10pK_a$ units more basic than the $Cl^-$ in 5b, indicating that the reaction proceeds through a Meisenheimer complex in which expulsion of the leaving group occurs after the rate-determining step (RDS). $M^+$ ion would catalyze the reaction by increasing either the nucleofugality of the leaving group through a four-membered cyclic transition state or the electrophilicity of the reaction center through a ${\pi}$-complex. However, the enhanced nucleofugality would be ineffective for the current reaction, since expulsion of the leaving group occurs after the RDS. Thus, it has been concluded that $M^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through a ${\pi}$-complex between $M^+$ ion and the ${\pi}$-electrons in the benzene ring.

Synthesis of Imidazo[1,2-a]pyridines and Pyrido[1,2-a]pyrimidines in Water and their SNAr Cyclizations

  • Chanu, Langpoklakpam Gellina;Singh, Thokchom Prasanta;Jang, Yong Ju;Yoon, Yong-Jin;Singh, Okram Mukherjee;Lee, Sang-Gyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.994-1000
    • /
    • 2014
  • Synthesis of tetrahydroimidazo[1,2-a]pyridines and tetrahydropyrido[1,2-a] pyrimidines by a one-pot and three component reaction of ${\alpha}$-oxoketenedithioacetals, diamines and DMAD in water has been described. Different routes for accessing the desired compounds were examined and a few specially designed-substrates have been utilized further to afford the new imidazo and pyrido fused [1,8] naphthyridine tetracyclic compound by $S_NAr$ intramolecular cyclization.