• Title/Summary/Keyword: $S_2O{_3}^{2-}$ion

Search Result 586, Processing Time 0.028 seconds

Electrical Characteristics of Cu-Ion Conducting Glasses (구리 이온 전도체 유리의 전기적 특성)

  • Lee, J.H.;Lim, K.J.;Park, S.C.;Ryu, B.H.;Kim, B.H.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.546-549
    • /
    • 1993
  • The correlation between electrical conduct ion and dielectric relaxation properties of copper ion conducting glasses is discussed. The glasses were prepared in the system $CuI-Cu_2S-Cu_2O-MoO_3$ using rapid quenching technique. These glasses have high ionic conductivities at room temperature in the range of $10^{circ}$[S/m], and the conductivities increase with increasing CuI content. The activation energies for conduction are 0.26-0.57 eV. The dielectric relaxation times are 1-10uS, and the activation energy for ion jumping are 0.18-0.41eV. It is shown that the tendency of conduction properties depending on composition of the glass is similar those of dilectric relaxation.

  • PDF

In-situ Measurements of the Stress in $TiO_2$ Thin Films ($TiO_2$ 박막의 두께에 따른 실시간 스트레스 측정에 관한 연구)

  • 한성홍
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.3
    • /
    • pp.260-265
    • /
    • 1993
  • An in-situ stress measurement interferometer is constructed and used to measure the intrinsic stress in Ti$O_2$ thin films during their growth by ion-assisted deposition. It is found that the stress increases with the momentum transferred by the ion beam to the growing film and is fairly well agreed with Windischmann's model. The variation of the stress with thickness is qualitatively explained in terms of the balance between the compressive stress produced by the ion beam and the surface diffusion determined by the surface temperature.

  • PDF

Properties of $TiO_2$ thin films deposited by ion-beam assisted reactive magnetron sputtering (이온빔 보조 반응이온 마그네트론 스퍼터링으로 증착된 $TiO_2$박막의 특성)

  • 김성화;이재홍;황보창권
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.141-150
    • /
    • 2002
  • Titanium oxide thin films were deposited by DC reactive magnetron sputtering(RMS) with Ar ion-beam assistance using end-Hall ion source at low oxygen partial pressure and long target-to-substrate distance. The optical and structural properties of deposited films were investigated by the measurement of measured transmittance and reflectance, atomic force microscope(AFM), and X-ray diffraction(XRD). The results show that the Ax ion-beam assisted RMS for titanium oxide thin films induces the higher packing density, lower absorption, and smoother surface than the conventional RMS, suggesting that it can be employed in deposition of optical dielectric coatings.

Effects of $Cu^{++}-Catalyzed$ Peroxidation on Collagen Gelation ($Cu^{++}-Catalyzed$ Peroxidation이 Collagen Gelation에 미치는 영향)

  • Chung, Myung-Hee;Kim, Myung-Suk;Lee, Chung-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.19 no.2
    • /
    • pp.35-44
    • /
    • 1983
  • reactive oxygen species에 의해 나타나는 reactivity에 있어서 metal ions이 관여함이 시사되고 있다. 이미 알려진 reactive oxygen species와 metal ions의 상호작용 이외에 특히 $Cu^{++}$$H_2O_2$가 강력한 peroxidative action을 나타낸다는 사실이 알려져 있으며 $Cu^{++}-H_2O_2$가 biological system 에서의 조직파괴에 관여할 가능성이 저자들에 의해서 효소 및 조직치 구조 단백질의 gradation 효과를 관찰함으로써 시사되었다. 본 연구는 $H_2O_2$ 혹은 $H_2O_2$를 생성하는 효소계(xanthine과 xanthine oxidase 및 glucose과 glucose oxidase)에 $Cu^{++}$을 첨가하여 $Cu^{++}-H_2O_2$에 의한 peroxidation의 효과를 collagen gelation을 통하여 확인코저 수행하였으며 다음과 같은 결과를 얻었다. 1) $Cu^{++}(20\;{\mu}M)$$H_2O_2$에 의하며 collagen gelation은 현저히 억제되었으며 이같은 억제효과는 양자의 농도에 비례하였다. 2) $Cu^{++}-H_2O_2$ reactivity를 확인하는 다른 방법으로 glucose oxidase system를 이용하였다. glucose oxidase$(2.5{\mu}g/ml)$ 와 glucose(0.5 mM)는 collagen gelation에 영향을 미치지 않았으나 이에 $Cu^{++}$이 존재하면 gelation이 억제되었다. 이때 억제정도는 $glucose(0.125{\sim}l.25\;mM)$$Cu^{++}$의 농도에 비례하였다. 3) 여러 reactive oxygen species 가운데 $Cu^{++}-H_2O_2$ reactivity를 xanthine oxidase system을 이용하여 확인하였다. (a) collagen gelation은 xanthine oxidase(30 munits/ml)와 xanthine$(0.25{\sim}2\;mM)$에 의하여 억제되었다. (b) 이때 나타나는 collagen gelation의 억제는 superoxide dismutase에 의하여 완전히 회복되었으나 catalase에 의해서는 더욱 촉진되었다. 그러나 catalase에 의한 억제효과의 촉진은 1,4-diazabicyclo(2,2,2)octane에 의하여 완전히 소실되었다. 따라서 이 xanthine oxidase system에서는 $O_2-,\;H_2O_2,\;^1O_2$이 관여함을 알 수 있었다. (c) 그러나 $Cu^{++}(10\;{\mu}M)$이 존재하였을 때 collagen gelation은 superoxie dismutase에 의해 더욱 억제되었고 catalase에 의해서는 완전히 회복되었다. xanthine oxidase계에서 얻어진 결과는 여러 reactive oxygen species가운데 $H_2O_2$$Cu^{++}$에 의하여 peroxidation효과를 나타냄을 알 수 있었다. 이상의 결과로 미루어 볼 때 reactive oxygen species와 metal ions과의 상호작용 가운데 $Cu^{++}-H_2O_2$는 강한 반응을 나타내는 특이한 구성요소이고 헌재 시사되고 있는 reactive oxygen species의 biological effects에 비추어 $Cu^{++}-catalyzed peroxidation$도 병적상태에서 생체에 유해한 작용을 나타내는 요소임을 시사하며 특히 염증시 조직파괴역할에 관하여 고찰하였다.

  • PDF

Heavy Metal Ion Immobilization Properties of Microporous Ettringite Body (에트린자이트 미세다공체의 중금속 이온 고정화 특성)

  • Na, Hyeon-Yeop;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.6
    • /
    • pp.668-672
    • /
    • 2009
  • Heavy metal ion immobilization properties of microporous ettringite (3Ca$O{\cdot}Al_2O_3{\cdot}3CaSO_4{\cdot}32H_2$) body were examined using standard solutions of typical heavy metals. Microporous Ettringite body with desirable shape for an ionic adsorbent was obtained by the self hardening of the paste prepared from the mixture of tricalcium aluminate($C_3$A) and gypsum(CaS$O_4{\cdot}2H_2$O). Crushed grains of ettringite were soaked in each standard solutions of Pb, Co, Cd, Mn and Cr concentrated at 200 ppm. In order to evaluate the ionexchange and immobilization ability, the ionic concentration of the filtrate solution as well as the solution obtained after leaching test was measured. As a result, for the heavy metal ions excepting Cr, porous ettringite body was revealed to be excellent in ionic exchange and immobilization properties though some ions eluted at the severe condition of pH 2. The adsorption and keeping capacity for four heavy metals showed the order of $Pb{>}Co{>}Cd{>}$Mn.

Behaviors of Ionic Conductivity with Temperature for High-Temperature PEMFC Containing Room Temperature ionic Liquids Under Non-humidified Condition (상온 이온액을 이용한 고온 무수 PEMFC용 고정화 액막의 온도에 따른 이온전도도 거동)

  • Kim, Beom-Sik;Byun, Yong-Hoon;Park, You-In;Lee, Sang-Hak;Lee, Jung-Min;Koo, Kee-Kahb
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.268-275
    • /
    • 2006
  • Novel SILEMs were prepared by multi-stage phase separation process combined by the low temperature phase separation (LTPS) and the high temperature phase separation (HTPS) using room temperature ionic liquids (RTILs) which have a high ionic conductivity. PVDF and imidazolium series ionic liquids were used as membrane material and electrolyte, respectively. To study the ion conducting properties, the SILEMs were tested using LCR meter at temperature controlled from 30 to $130^{\circ}C$. Under humid conditions, with increasing temperature from 30 to $100^{\circ}C$, the ion conductivity of the cast $Nafion^{(R)}$ membrane increased linearly, but then started to decrease after $100^{\circ}C$. However, in the case of the SILEMs, with increasing operating temperature, the ion conductivity increased. Also, the ion conductivity behaviors of the SILEMs were almost same, regardless of humidity. The ion conductivity of the SILEMs was $2.7{\times}10^{-3}S/cm$ and increased almost linearly up to $2.2{\times}10^{-2}S/cm$ with increasing temperature to $130^{\circ}C$. The effects of an inorganic filler on the physical properties of the SILEMs were studied using the $SiO_2$. The addition of $SiO_2$ could improve the mechanical strength of the SILEMs, though the ionic conductivity was decreased slightly.

The Study of Ibuprofen Degradation Properties by Combination of Wave Energy (Ultrasound, Ultraviolet) and Persulfate Ion (파 에너지 (자외선, 초음파)/과황산나트륨을 이용한 이부프로펜 분해특성 연구)

  • Na, Seungmin;Ahn, Yungyong;Cui, Mingcan;Son, Younggu;Khim, Jeehyeong
    • Journal of Environmental Science International
    • /
    • v.23 no.5
    • /
    • pp.963-972
    • /
    • 2014
  • In this study, ibuprofen(IBP) degradation by the photochemical ($UV/S_2O{_8}^{2-}$) and sonochemical ($US/S_2O{_8}^{2-}$) processes was examined under various parameters, such as UV ($10{\sim}40{\pm}5W/L$) and US ($50{\sim}90{\pm}5W/L$) power density, optimum dosage of persulfate ion ($S_2O{_8}^{2-}$), temperature ($20{\sim}60^{\circ}C$) and anions effect ($Cl^-$, $HCO_3{^-}$, $CO{_3}^{2-}$). The pseudo-first-order degradation rate constants were in the order of $10^{-1}$ to $10^{-5}min^{-1}$ depending on each processes. The synergistic effect of IBP degradation in $UV/S_2O{_8}^{2-}$ and $US/S_2O{_8}^{2-}$ processes could investigated, due to the generation of $SO_4{^-}$ radical. This result can confirm from the produced $H_2O_2$ and $SO{_4}^{2-}$ concentration in each processes. IBP degradation rate affected by the $S_2O{_8}^{2-}$ dosage, temperature, power and anion existence parameters. In particular, IBP degradation rate increased with the increase of the temperature ($60^{\circ}C$) and applied power density (UV:$40{\pm}5W/L$, US:$90{\pm}5W/L$). On the other hand, anions effect on the IBP degradation was negative, due to the anion play as a the scavenger of radical.

Electrode Properties of Li-ion Batteries using $TiO_2$-based Composite Nanowires ($TiO_2$기반 복합 나노선을 이용한 리튬이온 배터리의 전극 특성 연구)

  • An, Geon-Hyoung;Ahn, Hyo-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.3
    • /
    • pp.19-24
    • /
    • 2011
  • we successfully synthesized $TiO_2$-Ag composite nanowires via an electrospinning method and investigated the relationship between their electrochemical properties and structures by means of field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cycler. It is shown that the $TiO_2$-Ag composite nanowires exhibit superior electrochemical properties when compared to the single $TiO_2$ nanowires and $TiO_2$ nanoparticles (P25, Degussa). Therefore, the results indicate that the introduction of Ag nanophases within the electrospun $TiO_2$ nanowires could be improved the capacitance and cycleability of electrodes in Li-ion batteries.

Calculation of the Dipole Moment for Octahedral [Co(III)-$O_3N_3$], Tetrahedral [M(II)-$O_2N_2$] and Square Planner [M(II)-$O_2N_2$] Type Complexes [M(II) = Ni(II) or Cu(II)] (정팔면체 [Co(III)-$O_3N_3$], 정사면체 [M(II)-$O_2N_2$] 및 정사각형 [M(II)-$O_2N_2$] 형태 착물의 쌍극자모멘트의 계산 [M(II) = Ni(II) 또는 Cu(II)])

  • Ahn Sang Woon
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.5
    • /
    • pp.295-303
    • /
    • 1978
  • The dipole moments for octahedral [Co(III)-$O_3N_3$], tetrahedral [M(II)-$O_2N_2$] and square planar [M(II)-$O_2N_2$] types complexes are calculated by the expansion method for spherical harmonics using the valence basis sets for the central metal ion and the single basis set orbital ($2p_z$) for ligands. The calculated dipole moments for these complexes are in agreement with the experimental values.

  • PDF

Metallorganic Chemical Vapor Deposition and Characterization of TiO2 Nanoparticles

  • Jung, Oh-Jin;Kim, Sam-Hyeok;Cheong, Kyung-Hoon;Li, W.;Saha, S. Ismat
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.49-54
    • /
    • 2003
  • TiO₂nanoparticles were synthesized using the metallorganic chemical vapor deposition process. Particles with and without metal ion dopants were obtained. X-ray photoelectron and energy dispersive X-ray spectroscopic measurements confirmed the stoichiometry of the TiO₂nanoparticles. X-ray diffraction patterns showed a polycrystalline anatase structure of TiO₂. Transmission electron microscopy revealed that these particles are of nanoscale dimensions. Exact particle size and size distribution analyses were carried out by dynamic light scattering. The average particle size was determined to be 22 nm. The nanosize particles provided large surface area for photocatalysis and a large number of free surface-charge carriers, which are crucial for the enhancement of photocatalytic activity. To improve the photocatalytic activity, metal ions, including transition metal ions $(Pd^{2+},\;Pt^{4+},\;Fe^{3+})$ and lanthanide ion $(Nd^{3+})$ were added to pure TiO₂nanoparticles. The effects of dopants on photocatalytic kinetics were investigated by the degradation of 2-chlorophenol under an ultraviolet light source. The results showed that the TiO₂nanoparticles with the metal ion dopants have higher photocatalytic activity than undoped TiO₂. The $Nd^{3+}$ ion of these dopant metal ions showed the highest catalytic activity. The difference in the photocatalytic activity with different dopants is related to the different ionic radii of the dopants.