• Title/Summary/Keyword: $S_{n}$Ar-Ad.E mechanism

Search Result 1, Processing Time 0.016 seconds

Kinetic Studies on the Nucleophilic Substitution Reaction of 4-X-Substituted-2,6-dinitrochlorobenzene with Pyridines in MeOH-MeCN Mixtures

  • Sung, Ryun-Youn;Choi, Ho-june;Lee, Jong-Pal;Park, Jong-Keun;Yang, Ki-Yull;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1579-1582
    • /
    • 2009
  • The reaction rates of 4-X-2,6-dinitrochlorobenzenes (X = $NO_2,\;CN,\;CF_3$) with Y-substituted pyridines (Y = 3-$OCH_3,\;H,\;3-CH_3,\;4-CH_3$) in methanol-acetonitrile mixtures were measured by conductometry at 25 ${^{\circ}C}$. It was observed that the rate constant increased in the order of X = 4-$NO_2\;>\;4-CN\;>\;4-CF_3$ and the rate constant also increased in the order of Y = 4-$CH_3\;>\;3-CH_3\;>\;H\;>\;3-OCH_3$. When the solvent composition was varied, the rate constant increased in order of MeCN > 50% MeOH > MeOH. The electrophilic catalysis by methanol may be ascribed to the formation of hydrogen bonds between alcoholic hydrogen and nitrogen of pyridines in ground state. Based on the transition parameters, ${\rho}_S,\;{\rho}_N,\;{\beta}_Y,\;{\rho}_{XY}$ and solvent effects, the reaction seems to proceed via $S_N$Ar-Ad.E mechanism. We also estimated the isokinetic solvent mixtures (${\rho}_{XY}$ = 0) based on cross-interaction constants, where the substituent effects of the substrate and nucleophile are compensated.