• Title/Summary/Keyword: $S_{N}2$ mechanism

Search Result 756, Processing Time 0.028 seconds

Dispersion of Silicon Nitride Particles and Sintering Additives of AlN and Nd$_2$O$_3$ in Nonaqueous Suspending Media (비수계분산매체에서 질화규소와 소결첨가제 AlN 및 Nd$_2$O$_3$의 분산)

  • 김재원;백운규;윤경진
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.2
    • /
    • pp.210-219
    • /
    • 1999
  • The fundamental dispersion property of Si2N4 and a combination of AlN and Nd2O3 as sintering additives in a variety of organic solvents such as alcohols, hydrocarbons, ketones, and ethers was investigated. The stabilization mechanism and interaction between organic functional groups of the various organic additives were studied to clarify the dispersibility of the ceramic particles in the nonaqueous suspending medium. characterization of the suspensions was based mainly on electrokinetic sonic amplitude(ESA) measurements and the flow curves obtained from the rheological studies as well as estimated Hamaker constants. It was found that the contribution of electrostatic repulsive forces to the Si3N4, AlN and Nd2O3 stabilization in organic media is appreciably greater than anticipated and is dependent on the physicochemical properties of organic solvents.

  • PDF

PHOTOCATALYTIC ISOQUINOLINE PRODUCTION AND N-ALKYLATION BY PLATINIZED TITANIUM(IV) OXIDE PARTICLES SUSPENDED IN ALCOHOLIC SOLUTION OF PHENETHYLAMINES

  • Bunsho Ohtani;Yoshiko Moriguchi;Nishimoto, Sei-Ichi;Tomoyuki Inui
    • Journal of Photoscience
    • /
    • v.1 no.2
    • /
    • pp.107-111
    • /
    • 1994
  • Photocatalytic ($\lambda$$_{ex}$ > 300 nm) reaction at room temperature by platinized titanium (IV) oxide particles produced 1-methyl-1, 2, 3, 4-tetrahydroisoquinolines (MIQ's) from phenethylamines in aqueous ethanol suspension under deaerated atmosphere. Among the phenethylamines, dopamine (2-(3, 4-dihydroxyphenyl) ethylamine) showed the highest reactivity to give MIQ almost selectively under the neutralized conditions. The other phenethylamines gave predominantly N-alkylated and N, N-dialkylated products in the methanol or ethanol solutions. The reaction mechanism includes a Schiff base intermediate to undergo either nucleophilic attack leading to MIQ or reduction to N-alkylated products.

  • PDF

Arachidonic Acid Activates $K^+$-$Cl^-$-cotransport in HepG2 Human Hepatoblastoma Cells

  • Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.401-408
    • /
    • 2009
  • $K^+$-$Cl^-$-cotransport (KCC) has been reported to have various cellular functions, including proliferation and apoptosis of human cancer cells. However, the signal transduction pathways that control the activity of KCC are currently not well understood. In this study we investigated the possible role of phospholipase $A_2$ ($PLA_2$)-arachidonic acid (AA) signal in the regulatory mechanism of KCC activity. Exogenous application of AA significantly induced $K^+$ efflux in a dose-dependent manner, which was completely blocked by R-(+)-[2-n-butyl-6,7 -dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1Hinden-5-yl]oxy]acetic acid (DIOA), a specific KCC inhibitor. N-Ethylmaleimide (NEM), a KCC activatorinduced $K^+$ efflux was significantly suppressed by bromoenol lactone (BEL), an inhibitor of the calciumindependent $PLA_2$ ($iPLA_2$), whereas it was not significantly altered by arachidonyl trifluoromethylketone ($AACOCF_3$) and p-bromophenacyl bromide (BPB), inhibitors of the calcium-dependent cytosolic $PLA_2$ ($cPLA_2$) and the secretory $PLA_2$ ($sPLA_2$), respectively. NEM increased AA liberation in a doseand time-dependent manner, which was markedly prevented only by BEL. In addition, the NEM-induced ROS generation was significantly reduced by DPI and BEL, whereas $AACOCF_3$ and BPB did not have an influence. The NEM-induced KCC activation and ROS production was not significantly affected by treatment with indomethacin (Indo) and nordihydroguaiaretic acid (NDGA), selective inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX), respectively. Treatment with 5,8,11,14-eicosatetraynoic acid (ETYA), a non-metabolizable analogue of AA, markedly produced ROS and activated the KCC. Collectively, these results suggest that $iPLA_2$-AA signal may be essentially involved in the mechanism of ROS-mediated KCC activation in HepG2 cells.

The Origin of Coercivity Enhancement of Sintered NdFeB Magnets Prepared by Dy Addition

  • Yu, N.J.;Pan, M.X.;Zhang, P.Y.;Ge, H.L.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.235-239
    • /
    • 2013
  • The effect of Dy addition on the microstructure and magnetic properties of the sintered NdFeB magnets was investigated. The results of the microstructure analysis showed that Dy-free and Dy-doped samples are composed of $Nd_2Fe_{14}B$ (P42/mnm) and a trace of Nd-rich phase. Dy addition reduces significantly the pole density factor of (004), (006) and (008) crystal faces as estimated by the Horta formula. Accordingly, the coercivity of the Dy-doped sample increases from 2038 $kA{\cdot}m^{-1}$ up to 2288 $kA{\cdot}m^{-1}$. The $H_{cj}(T)/M_s(T)$ versus $H^{min}_N/M_s(T)$ (Kronm$\ddot{u}$ller-plot) behavior shows that the nucleation is the dominating mechanism for the magnetization reversal in these two kinds of magnets, and two microstructural parameters of ${\alpha}_k$ and $N_{eff}$ are obtained. The Kronm$\ddot{u}$ller-Plot gives evidence for an increase of the ${\alpha}_k$ responsible for an increase of the coercivity as the result of the increase of the magnetic field as the magnetic domain reversed.

A Kinetic Study on the Solvolysis of Benzyl Chloride under High Pressure (고압하에서 염화벤질의 가용매분해반응에 대한 속도론적 연구)

  • Kwon, Oh-Cheun;Kyong, Jin-Burm
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.207-214
    • /
    • 1987
  • Rates of solvblysis of benzyl chloride in ethanol-water mixtures have been measured at 30 and $40^{\circ}C$ under various pressures up 1.6 kbar. The plots of 1n k as a function of pressure are fitted to a second order function in p, and values of ${\Delta}V^{\neq}$and ${\Delta}{\beta}^{\neq}$ are obtained from the results. Also the values of various pseudo thermodynamic quantities were evaluated from the rate constants. The relationships of the 1n k to $Q_w$ or 1n $C_w$ indicate that the reaction proceeds through $S_N1$ mechanism. A comparison between the present and the previous results gives that the increasing order of ${\mid}{{\Delta}V_0}^{\neq}{\mid}$ and n-values are $p-Cl>p-H>p-CH_3$ and $p-CH_3>p-H.p-Cl$, respectively. From these results, it is believed substituent such as the $p-CH_3$group favors the $S_N1(1)$ character, while the p-Cl group leads to the $S_N1(2)$ character.

  • PDF

(Photosensitive Polymers VII) Mechanism of Photosensitized Curing Reaction of Cinnamoylated Polymers ((感光性 高分子에 關한 硏究 VII) Cinnamoylated Polymers의 光增感 硬化反應機構)

  • Kim, Kwang-Sup;Shim, Jyong-Sup
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.166-174
    • /
    • 1966
  • The multistep mechanism of photosensitized curing reaction cinnamoylated photosensitive polymer is proposed from the energy level diagram of cinnamic acid and sensitizer, and from the fact that excess of sensitizer brings the sensitivity to a limiting value etc. Various factors which have effects on the ability of sensitizer are also discussed. The mechanism involves following steps: activation to the first excited singlet states of cinnamoyl group(C) and sensitizer(S) by their absorption of photon, their intersystem crossing to the lowest triplet state, bimolecular internal quenching by formation of excimer of sensitizer, triplet excitation energy transfer and intermolecular addition between cinnamoyl group in ground state and that in triplet state. The rate equation derived from this mechanism is $-\frac{d[C]}{dt} = \frac{K_1[C]}{K_2 + [C]}[\frac{I^c_{abs}}{K_3 + [S]} + \frac{K_4[C]}{(K_5 + [C])(K_6 + [S])}(I^s_{abs} + \frac{K_7I^c_{abs}[S]}{K_8 + [S]})]$ where $I^c_{abs}\;and\;I^s_{abs}$: the rates of absorption of photon by cinnamoyl group and sensitizer $K_n$: Constants. It is proved with the cinnamate of poly(glyceryl phthalate)(PGC) in the absence of sensitizer using the infrared analytical method and successfully applied for the experimental data reported on the effects of the degree of cinnamoyl esterification and the concentration of sensitizer upon the sensitivity.

  • PDF

A New Chiral Stationary Phase Derived from Cyclohexylamide Derivative of (S)-Naproxen for the Liquid Chromatographic Resolution of Enantiomers

  • 현명호;이정배
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.10
    • /
    • pp.977-980
    • /
    • 1995
  • A new chiral stationary phase (CSP 2) derived from cyclohexylamide of (S)-naproxen has been prepared. CSP 2 has shown greater enantioselectivities for the two enantiomers of N-(3,5-dinitrobenzoyl)-a-amino esters and amides than the CSP derived from 3,5-dimethylanilide of (S)-naproxen (CSP 1) as expected from the reciprocity conception of chiral recognition. However, CSP 2 has been found to be worse than CSP 1 in resolving N-(3,5-dinitrobenzoyl)-a-arylalkylamines, supporting the previously proposed chiral recognition mechanism which utilizes the 3,5-dimethylphenyl group of CSP 1 as an alternative π-basic interaction site. In addition, CSP 2 has been found to be reasonably good in resolving the two enantiomers of a variety of other π-acidic racemates.

Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1939-1944
    • /
    • 2011
  • The nucleophilic substitution reactions of bis(Y-aryl) chlorophosphates (1) with substituted anilines and deuterated anilines are investigated kinetically in acetonitrile at 35.0 $^{\circ}C$. The kinetic results of 1 are compared with those of Y-aryl phenyl chlorophosphates (2). The substrate 1 has one more identical substituent Y compared to substrate 2. The cross-interaction between Y and Y, due to additional substituent Y, is significant enough to result in the change of the sign of cross-interaction constant (CIC) from negative ${\rho}_{XY}$ = -1.31 (2) to positive ${\rho}_{XY}$ = +1.91 (1), indicating the change of reaction mechanism from a concerted $S_N2$ (2) to a stepwise mechanism with a rate-limiting leaving group departure from the intermediate (1). The deuterium kinetic isotope effects (DKIEs) involving deuterated anilines ($XC_6H_4ND_2$) show secondary inverse, $k_H/k_D$ = 0.61-0.87. The DKIEs invariably increase as substituent X changes from electron-donating to electron-withdrawing, while invariably decrease as substituent Y changes from electron-donating to electron-withdrawing. A stepwise mechanism with a rate-limiting bond breaking involving a predominant backside attack is proposed on the basis of positive sign of ${\rho}_{XY}$ and secondary inverse DKIEs.

Co-Deposition법을 이용한 Yb Silicide/Si Contact 및 특성 향상에 관한 연구

  • Gang, Jun-Gu;Na, Se-Gwon;Choe, Ju-Yun;Lee, Seok-Hui;Kim, Hyeong-Seop;Lee, Hu-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.438-439
    • /
    • 2013
  • Microelectronic devices의 접촉저항의 향상을 위해 Metal silicides의 형성 mechanism과 전기적 특성에 대한 연구가 많이 이루어지고 있다. 지난 수십년에 걸쳐, Ti silicide, Co silicide, Ni silicide 등에 대한 개발이 이루어져 왔으나, 계속적인 저저항 접촉 소재에 대한 요구에 의해 최근에는 Rare earth silicide에 관한 연구가 시작되고 있다. Rare-earth silicide는 저온에서 silicides를 형성하고, n-type Si과 낮은 schottky barrier contact (~0.3 eV)를 이룬다. 또한, 비교적 낮은 resistivity와 hexagonal AlB2 crystal structure에 의해 Si과 좋은 lattice match를 가져 Si wafer에서 high quality silicide thin film을 성장시킬 수 있다. Rare earth silicides 중에서 ytterbium silicide는 가장 낮은 electric work function을 갖고 있어 낮은 schottky barrier 응용에서 쓰이고 있다. 이로 인해, n-channel schottky barrier MOSFETs의 source/drain으로써 주목받고 있다. 특히 ytterbium과 molybdenum co-deposition을 하여 증착할 경우 thin film 형성에 있어 안정적인 morphology를 나타낸다. 또한, ytterbium silicide와 마찬가지로 낮은 면저항과 electric work function을 갖는다. 그러나 ytterbium silicide에 molybdenum을 화합물로써 높은 농도로 포함할 경우 높은 schottky barrier를 형성하고 epitaxial growth를 방해하여 silicide film의 quality 저하를 야기할 수 있다. 본 연구에서는 ytterbium과 molybdenum의 co-deposition에 따른 silicide 형성과 전기적 특성 변화에 대한 자세한 분석을 TEM, 4-probe point 등의 다양한 분석 도구를 이용하여 진행하였다. Ytterbium과 molybdenum을 co-deposition하기 위하여 기판으로 $1{\sim}0{\Omega}{\cdot}cm$의 비저항을 갖는 low doped n-type Si (100) bulk wafer를 사용하였다. Native oxide layer를 제거하기 위해 1%의 hydrofluoric (HF) acid solution에 wafer를 세정하였다. 그리고 고진공에서 RF sputtering 법을 이용하여 Ytterbium과 molybdenum을 동시에 증착하였다. RE metal의 경우 oxygen과 높은 반응성을 가지므로 oxidation을 막기 위해 그 위에 capping layer로 100 nm 두께의 TiN을 증착하였다. 증착 후, 진공 분위기에서 rapid thermal anneal(RTA)을 이용하여 $300{\sim}700^{\circ}C$에서 각각 1분간 열처리하여 ytterbium silicides를 형성하였다. 전기적 특성 평가를 위한 sheet resistance 측정은 4-point probe를 사용하였고, Mo doped ytterbium silicide와 Si interface의 atomic scale의 미세 구조를 통한 Mo doped ytterbium silicide의 형성 mechanism 분석을 위하여 trasmission electron microscopy (JEM-2100F)를 이용하였다.

  • PDF