• Title/Summary/Keyword: $SO_3$ decomposition

Search Result 292, Processing Time 0.021 seconds

Distortional Analysis of Multicell Box Girders with a Trapezoidal Cross-Section Using Force-Decomposition Method (하중분해법을 사용한 제형 다실박스거더의 뒤틀림 해석)

  • Kim, Seungjun;Park, Nam Hoi;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.779-788
    • /
    • 2008
  • In this present study, the three dimensional shell elements analysis method for exact distortional behavior of multicell trapezoidal box girders subjected to an eccentric loading is proposed. In order to perform the independent distortional analysis using shell elements, it is necessary to calculate exact distortional forces. In this study, the force-decomposition equation for applied eccentric load acting on multicell trapezoidal box girder is derived and the equation based on static force equilibrium and superposition theory decompose the eccentric load to the loads cause flexture, torsion and distortion. So by using this force-decomposition equation and shell element analysis, each behavior can be easily analysis independently. This independent analysis method is very useful to physically understand each major behavior of multicell box girder, especially distortional phenomenon. Furthermore, it may be also very useful for designer to perform the independent distortional analysis for diaphragm design using simple 3D shell elements model without preliminary complex calculation for distortional constants.

A Study on Prevention of Fouling Formation by Reduction Reaction of CaSO4 in a Biomass Circulating Fluidized Bed Combustion (바이오매스 순환유동층 연소에서 CaSO4 환원반응에 의한 파울링 발생 방지 연구)

  • Seong-Ju Kim;Sung-Jin Park;Sung-Ho Jo;Se-Hwa Hong;Yong-Il Mun;Tae-Young Mun
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A large amount of carbon monoxide (CO) is generated in circulating fluidized bed combustion, the process whereby a hot cyclone separates unburned fuel. However, calcium sulfate (CaSO4), when combined with a high CO content, can cause fouling on the surface of the steam tube installed inside the integrated recycle heat exchangers (INTREX). In this study, CaSO4 decomposition was investigated using 0.2-3.2 vol.% CO and 1-3 vol.% oxygen (O2) at 850℃ for 20 min in a lab-scale fluidized bed reactor. The results show that CaSO4 decomposes into CaS and CaO when CO gas is supplied, and SO2 emissions increase from 135 ppm to 1021 ppm with increasing CO concentration. However, the O2 supply delayed SO2 emissions because the reaction between CO and O2 is faster than that of CaSO4; nevertheless, when supplied with CaCO3, the intermediate product, SO2 was significantly released, regardless of the CO and O2 supply. In addition, agglomerated solids and yellow sulfur power were observed after solid recovery, and the reactor distributor was corroded. Consequently, a sufficient O2 supply is important and can prevent fouling formation on the INTREX surface by suppressing CaSO4 degradation.

A Study of Nitrous Oxide Decomposition using Calcium Oxide (Calcium Oxide를 이용한 N2O 분해에 관한 CO2의 영향 연구)

  • Paek, Jin-Young;Park, Yeong-Sung;Shun, Dowon;Bae, Dal-Hee
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.746-751
    • /
    • 2002
  • Fluidized bed combustion is a coal combustion technology that can reduce both SOx and NOx emission; SOx is removed by limestone that is fed into the combustion chamber and the NOx is reduced by low temperature combustion in a fluidized bed combustor and air stepping, but $N_2O$ generation is quite high. $N_2O$ is not only a greenhouse gas but also an agent of ozone destruction in the stratosphere. The calcium oxide(CaO) is known to be a catalyst of $N_2O$ decomposition. This study of $N_2O$ decomposition reaction in fixed bed reactor packed over CaO bed has been conducted. Effects of parameters such as concentration of inlet $N_2O$ gas, reaction temperature, CaO bed height and effect of $CO_2$, NO, $O_2$ gas on the decomposition reaction have been investigated. As a result of the experiment, it has been shown that $N_2O$ decomposition reaction increased with the increasing fixed bed temperature. While conversion of the reaction was decreased with increasing $CO_2$ concentration. Also, under the present of NO, the conversion of $N_2O$ decomposition is decreased. From the result of kinetic study gained the heterogeneous reaction rate on $N_2O$ decomposition. In the case of $N_2O$ decomposition over CaO, heterogeneous reaction rate is. $\frac{d[N_2O]}{dt}=\frac{3.86{\times}10^9{\exp}(-15841/R)K_{N_2O}[N_2O]}{(1+K_{N_2O}[N_2O]+K_{CO_2}[CO_2])}$. In this study, it is found that the calcium oxide is a good catalyst of $N_2O$ decomposition.

Mineralogy of Alunite from the Sungsan Mine (성산광산(聲山鑛山) 명반석(明礬石)의 광물학적(鑛物學的) 특성(特性))

  • Cho, Hyen Goo;Kim, Soo Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.81-89
    • /
    • 1989
  • Alunite occurs as massive, cavity-filling and veinlets in the Cretaceous Hwangsan Formation in the Sungsan mine, Korea. It is a hydrothermal alteration product of rhyolitic tuffs, and associated with dickite, quartz and barite. The average chemical formula of alunite in the mine is $(K_{0.93}Na_{0.07})_{1.00}Al_{3.00}(SO_4)_{2.00}(OH)_6$. Atomic percentage of Na substituting for K in A site of the alunite structure varies from 5.9 to 9.2. Unit-cell volume and c dimension decrease with increasing Na atomic percentage. On the basis of thermal and high temperature XRD analyses, the decomposition of alunite into $KAl(SO_4)_2$ and $NaAl(SO_4)_2$ concomitant with the liberation of structural water (12.86%) occurs at about $550^{\circ}C$. The reconstruction of $KAl(SO_4)_2$ and $NaAl(SO_4)_2$ to $Al_2(SO_4)_3$, arcanite and thenardite, and the crystallization of ${\gamma}-Al_2O_3$ take place at about $720^{\circ}C$. The destruction of $Al_2(SO_4)_3$ structure takes place at about $760^{\circ}C$ removing 3/4 of total $SO_3$ (27.32%).

  • PDF

A Study on Optimal Design of Single Periodic, Multipurpose Batch Plants

  • Rhee, In-Hyoung;Cho, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The purpose of this paper is to describe the design of a general multipurpose batch process or plant in terms of a series of mathematical programing models, and to develop approach solution methodologies. The proposed model for a single period is based on the formulation (MINLP; Mixed Integer Nonlinear Programming) of Papageorgaki and Reklaitis [1], but was linearized (MILP; Mixed Integer Linear Programming) so as to obtain an exact and practical solution, and to allow treatment of uncertainties to be considered in expanding the plant. As a solution strategy a modified Benders' Decomposition was introduced and was tested on three example problems. The optimizing solver, OSL code provided by the IBM Corporation, was used for solving the problems. The solution method was successful in that it showed remarkable reduction in the computing times as compared with the direct solution method.

  • PDF

Sintering Characteristics of Zircon Nanopowders Fabricated by High Energy Milling Process (고 에너지 밀링 공정으로 제조된 지르콘 나노분말의 소결특성에 관한 연구)

  • Lee, Ju Seong;Kang, Jong Bong
    • Korean Journal of Materials Research
    • /
    • v.26 no.2
    • /
    • pp.95-99
    • /
    • 2016
  • In this study, 5 um sized $ZrSiO_4$ was ground to 1.9 um, 0.3 um, and 0.1 um sized powders by wet high energy milling process, and the sintering characteristics were observed. Pure $ZrSiO_4$ itself can-not be sintered to these levels of theoretical density, but it was possible to sinter $ZrSiO_4$ powder of nano-scale size of, -0.1 um to the theoretical density and to lower the sintering temperature for full density. Also, the decomposition of $ZrSiO_4$ with a size in the micron range resulted in the formation of monoclinic $ZrO_2$; however, in the nano sized range, the decomposition resulted in the tetragonal phase of $ZrO_2$. So, it was possible to improve the sintering characteristics of nano-sized $ZrSiO_4$ powders.

High-resolution mass models of the Large Magellanic Cloud

  • Kim, Shinna;Oh, Se-Heon;For, Bi-Qing;Sheen, Yun-Kyeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.71.1-71.1
    • /
    • 2021
  • We perform disk-halo decomposition of the Large Magellanic Cloud (LMC) using a novel HI velocity field extraction method, aimed at better deriving its HI kinematics and thus mass distribution in the galaxy including both baryons and dark matter. We decompose all the line-of-sight velocity profiles of the combined HI data cube of the LMC, taken from the Australia Telescope Compact Array (ATCA) and Parkes radio telescopes with an optimal number of Gaussian components. For this, we use a novel tool, the so-called BAYGAUD which performs profile decomposition based on Bayesian MCMC techniques. From this, we disentangle turbulent non-ordered HI gas motions from the decomposed gas components, and produce an HI bulk velocity field which better follows the global circular rotation of the galaxy. From a 2D tilted-ring analysis of the HI bulk velocity field, we derive the rotation curve of the LMC after correcting for its transverse, nutation and precession motions. The dynamical contributions of baryons like stars and gaseous components which are derived using the Spitzer 3.6 micron image and the HI data are then subtracted from the total kinematics of the LMC. Here, we present the bulk HI rotation curve, the mass models of stars and gaseous components, and the resulting dark matter density profile of the LMC.

  • PDF

Kennicutt-Schmidt law with H I velocity profile decomposition in NGC 6822

  • Park, Hye-Jin;Oh, Se-Heon;Wang, Jing;Zheng, Yun;Zhang, Hong-Xin;de Blok, W.J.G.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.32.3-33
    • /
    • 2021
  • We present H I gas kinematics and star formation activities of NGC 6822, a dwarf galaxy located in the Local Volume at a distance of ~ 490 kpc. We perform profile decomposition of the line-of-sight velocity profiles of the high-resolution (42.4" × 12" spatial; 1.6 km/s spectral) H I data cube taken with the Australia Telescope Compact Array (ATCA). For this, we use a new tool, the so-called BAYGAUD (BAYesian GAUssian Decompositor) which is based on Bayesian Markov Chain Monte Carlo (MCMC) techniques, allowing us to decompose a line-of-sight velocity profile into an optimal number of Gaussian components in a quantitative manner. We classify the decomposed H I gas components of NGC 6822 into bulk-narrow, bulk-broad, and non_bulk with respect to their velocity and velocity dispersion. We correlate their gas surface densities with the surface star formation rates derived using both GALEX far-ultraviolet and WISE 22 micron data to examine the impact of gas turbulence caused by stellar feedback on the Kennicutt-Schmidt (K-S) law. The bulk-narrow component that resides within r25 is likely to follow the linear extension of the Kennicutt-Schmidt (K-S) law for molecular hydrogen (H2) at the low gas surface density regime where H I is not saturated.

  • PDF

Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (I) (도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (I))

  • Jung, Yeon-Hoon;Lee, Soo-Koo
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.979-983
    • /
    • 2009
  • The mean pH of wastewater discharged from the plating process is 2, so a less amount of alkali is required to raise pH 2 to 5. In addition, if sodium sulfite is used to raise pH 5 to 9 in the secondary treatment, caustic soda or slaked lime is not necessary or only a small amount is necessary because sodium sulfite is alkali. Thus, it is considered desirable to use only $FeSO_4{\cdot}7H_2O$ in the primary treatment. At that time, the free cyanide removal rate was highest as around 99.3%, and among heavy metals, Ni showed the highest removal rate as around 92%, but zinc and chrome showed a low removal rate. In addition, the optimal amount of $FeSO_4{\cdot}7H_2O$ was 0.3g/L, at which the cyanide removal rate was highest. Besides, the free cyanide removal rate was highest when pH value was 5. Of cyanide removed in the primary treatment, the largest part was removed through the precipitation of ferric ferrocyanide: $[Fe_4(Fe(CN)_6]_3$, and the rest was precipitated and removed through the production of $Cu_2[Fe(CN)_6]$, $Ni_2[Fe(CN)_6]$, CuCN, etc. Furthermore, it appeared more effective in removing residual cyanide in wastewater to mix $Na_2SO_3$ and $Na_2S_2O_5$ at an optimal ratio and put the mixture than to put them separately, and the optimal weight ratio of $Na_2SO_3$ to $Na_2S_2O_5$ was 1:2, at which the oxidative decomposition of residual cyanide was the most active. However, further research is required on the simultaneous removal of heavy metals such as chrome and zinc.

Causes of the Decline in Terms of Trade in Korea since the Mid-1990s (1990년대 중반 이후 교역조건 하락추세의 원인분석)

  • Hahn, Chinhee;Ryu, Sunghyun
    • KDI Journal of Economic Policy
    • /
    • v.32 no.3
    • /
    • pp.33-69
    • /
    • 2010
  • This paper examines the causes of the terms of trade decline in Korea since the mid-1990s, using the decomposition methodology suggested by Baxter and Kouparitsas (2000) as well as regression analysis. The main empirical results are summarized as follows. The decomposition exercise of changes in terms of trade showed that Korea's terms of trade decline for the past decade or so is attributable to goods price effect which were driven by the rise of oil prices relative to manufactures. The decomposition of terms of trade change for 55 countries showed that terms of trade decline due to goods price effect is a phenomenon that was commonly observed for exporters of manufactures since mid-1990s. These results suggest that external factors such as China's trade expansion, rather than internal factors, are mostly responsible for the decline in terms of trade. In accordance with these results, the regression results suggest that China's trade expansion contributed to Korea's terms of trade decline, especially in 2000s, by raising the import prices of oil and raw materials and lowering the export prices of manufacturing products.

  • PDF