• Title/Summary/Keyword: $SO_2$ corrosion

Search Result 492, Processing Time 0.036 seconds

High-temperature electrochemical corrosion behavior of SA106 Grade B carbon steel with corrosion inhibitors in HyBRID solution

  • Sung-Wook Kim;Sang-Yoon Park;Chang-Hyun Roh;Sun-Byeong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2256-2262
    • /
    • 2023
  • The electrochemical corrosion behaviors of SA106 Grade B (SA106B) carbon steel in H2SO44-N2H4 and H2SO4-N2H4-CuSO4 solutions at 95 ℃ have been investigated with the addition of commercial corrosion inhibitors (CI#30 and No. 570S), to determine the stability of SA106B in the hydrazine-based reductive metal ion decontamination (HyBRID) process. The potentiodynamic polarization experiment revealed that the corrosion inhibitors were capable of lowering the corrosion rate of SA106B in H2SO4-N2H4 solution. It was found that the corrosion inhibitors induced formation of fixed surface layer on the carbon steel upon the corrosion. This corrosion inhibition performance was reduced in the presence of CuSO4 in the solution owing to the chemical reactions between organic compounds in the corrosion inhibitors and CuSO4. CI#30 showed a better corrosion inhibition effect in the H2SO4-N2H4-CuSO4 solution. Although the corrosion inhibitors can provide better stability to SA106B in the HyBRID solution, their application should be carefully considered because it may result in reduced decontamination performance and increased secondary waste generation.

Corrosion Behavior of Casting Aluminum Alloys in H2SO4 Solution (H2SO4 수용액에서의 주조용 알루미늄 합금들의 부식거동)

  • Woo, Sang-Hyun;Son, Young-Jin;Lee, Byung-Woo
    • Journal of Power System Engineering
    • /
    • v.20 no.3
    • /
    • pp.17-21
    • /
    • 2016
  • The corrosion behavior of aluminum alloys in the $H_2SO_4$ solution was investigated based on potentiodynamic techniques. Electrochemical properties, such as corrosion potential($E_c$), passive potential($E_p$), corrosion current density($I_c$), corrosion rate(mpy), of Al-Mg-Si, Al-Cu-Si and Al-Si alloys were characterized at room temperature. Passive aluminum oxide film, which including $Al_2(SO_4)_3$ and $3Al_2O_34SO_38H_2O$, were uniformly formed on the surface via the reaction of Al with $SO{_3}^{2-}$ or $SO{_4}^{2-}$ ions in the $H_2SO_4$ solution and the dependence of the corrosion behavior on the alloying element was discussed. The selective leaching of alloy element increased with increasing Cu content in the aluminum alloys.

Water Layer in Course of Corrosion of Copper in Humid Air Containing $SO_2$

  • Sasaki, Takeshi;Itoh, Jun;Ohtsuka, Toshiaki
    • Corrosion Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.88-92
    • /
    • 2003
  • The technique for in situ simultaneous measurements of IR-RAS and QCM, which has been developed for investigation of corrosion in gaseous environments, was employed to study the effects of an extremely thin water layer on the corrosion rate. An evaporated copper film on a QCM element was exposed to air containing water vapor and $SO_2$, and time-resolved IR-RAS spectra were measured and mass gains were simultaneously followed with QCM. The tested ranges of relative humidity (RH) and concentration of $SO_2$ were 60% - 90% and 1 - 20 ppm, respectively. On the basis of 2D-IR analysis, the corrosion products were determined to be Chevreul's salt ($CuSO_3Cu_2SO_3{\cdot}2H_2O$) and $CuSO_4{\cdot}5H_2O$. By constructing curves of the relations between band intensities of IR spectra and mass gains of QCM for the corrosion products, the time variations in each product were determined from spectral experiments on copper plates. The thicknesses of physically adsorbed water layers in course of the corrosion process were also determined from water band intensities. The results showed that the thickness of the physically adsorbed water layer increased with increase in RH, and it also increased with increase in accumulation of corrosion products. The latter is probably due to the capillary effect of the corrosion products.

High-Temperature Corrosion Characteristics of T22 and T92 Steel in SO2-Containing Gas at 650 ℃ (650 ℃의 SO2 가스 환경 하에서 T22와 T92 강의 고온 부식특성)

  • Jung, Kwang-Hu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.285-291
    • /
    • 2019
  • In this study, the corrosion characteristics of T22 and T92 steel were investigated in 6O2 + 16CO2 + 2SO2 gas environment at 650 ℃. Corrosion characteristics were characterized by weight gain, oxide layer thickness, scanning electron microscope, optical microscope, energy dispersive X-ray spectroscopy, and X-ray diffraction. T22 and T92 steel tended to stagnate oxide layer growth over time. Oxidation kinetics were analyzed using the data of oxide layer thickness, and a regression model was presented. The regression model was significantly acceptable. The corrosion rate between the two steels through the regression model showed significant difference. The T92 steel was approximately twice as large as the time exponent and showed very good corrosion resistance compared to the T22 steel. In both steels, the oxide layer mainly formed a Fe-rich oxide layer composed of hematite (Fe2O3), magnetite (Fe3O4), and spinel (FeCr2O4). Sulfide segregation occurred in the oxide layer due to SO2 gas. However, the locations of segregation for the T22 and T92 steel were different.

Study of High Temperature of Inconel 740 Alloy in Air and Ar-0.2%SO2 Gas (대기 및 Ar-0.2%SO2가스에서 Inconel 740 합금의 고온부식 연구)

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.43-52
    • /
    • 2021
  • The Ni-based superalloy, Inconel 740, was corroded between 800 and 1100℃ for up to 100 hr in air and Ar-0.2%SO2 gas in order to study its corrosion behavior in air and sulfur/oxygen environment. It displayed relatively good corrosion resistance in both environment, because its corrosion was primarily dominated by not sulfidation but oxidation especially in Ar-0.2%SO2 gas. Such was attributed to the thermodynamic stability of oxides of alloying elements when compared to corresponding sulfides. The scales consisted primarily of Cr2O3, together with some NiAl2O4, MnCr2O4, NiCrMnO4, and rutile-TiO2. Sulfur from SO2 gas made scales prone to spallation, and thicker. It also widened the internal corrosion zone when compared to air. The corrosion resistance of IN740 was mainly indebted to the formation of protective Cr2O3-rich oxides, and suppression of the sulfide formation.

Corrosion Behavior of Carbon Steel in Diluted Sulfuric Acid based on Seawater

  • Kim, Mun Su;Jeong, Jin-A
    • Corrosion Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.78-85
    • /
    • 2019
  • The International Maritime Organization (IMO) will administer a new 0.5% global sulfur cap on fuel content from 1 January 2020, lowering from the present 3.5% limit. Seawater $SO_x$ (sulfur oxide) scrubbing is especially spray scrubbing and a promising alternative to complying with the IMO regulation. However, the ionization of $SO_2$ (sulfur dioxide) and the $H_2SO_4$ (sulfuric acid) formed from $SO_3$ (sulfur trioxide) is proposed to accelerate corrosion of the internal seawater pipe. Apparently, the corrosion of the scrubber seawater piping system occurs in a severe and frequent manner. Hence, in this study, electrochemical measurement and weight loss of carbon steel (used as seawater pipe in most of the ships) in diluted sulfuric acid solution were investigated to determine corrosion rate, corrosion current density, corrosion potential, electrochemical behavior, and impressed-current density. Accordingly, the corrosion rate of carbon steel sheet in various diluted sulfuric acid solutions was observed to be greater than that in natural seawater, thus suggesting the fundamental data to deal with corrosion problems in scrubber seawater pipe.

Corrosion of Fe-17%Cr Steels in (Na2SO4+NaCl) Salts at 800 and 900℃

  • Lee, Dong Bok;Xiao, Xiao
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.214-217
    • /
    • 2018
  • Stainless steel grade 430 with a composition of Fe-17%Cr was corroded in $Na_2SO_4$ and ($Na_2SO_4+NaCl$) salts at 800 and at $900^{\circ}C$ for up to 20 h. It corroded mainly to $Cr_2O_3$, along with a small amount of $Fe_2O_3$ and $Fe_3O_4$. The formed oxide scales were neither dense nor compact enough owing to their ensuing dissolution into the salt during corrosion, which facilitated internal corrosion. Corrosion occurred faster at $900^{\circ}C$ than $800^{\circ}C$. NaCl in $Na_2SO_4$ aggravated the scale adherence.

Effects of Sulfuric Acid Concentration and Alloying Elements on the Corrosion Resistance of Cu-bearing low Alloy Steels

  • Kim, Ki Tae;Kim, Young Sik
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.154-165
    • /
    • 2018
  • During the process of sulfur dioxide removal, flue gas desulfurization equipment provides a serious internal corrosion environment in creating sulfuric acid dew point corrosion. Therefore, the utilities must use the excellent corrosion resistance of steel desulfurization facilities in the atmosphere. Until now, the trend in developing anti-sulfuric acid steels was essentially the addition of Cu, in order to improve the corrosion resistance. The experimental alloy used in this study is Fe-0.03C-1.0Mn-0.3Si-0.15Ni-0.31Cu alloys to which Ru, Zn and Ta were added. In order to investigate the effect of $H_2SO_4$ concentration and the alloying elements, chemical and electrochemical corrosion tests were performed. In a low concentration of $H_2SO_4$ solution, the major factor affecting the corrosion rate of low alloy steels was the exchange current density for $H^+/H_2$ reaction, while in a high concentration of $H_2SO_4$ solution, the major factors were the thin and dense passive film and resulting passivation behavior. The alloying elements reducing the exchange current density in low concentration of $H_2SO_4$, and the alloying elements decreasing the passive current density in high concentration of $H_2SO_4$, together play an important role in determining the corrosion rate of Cu-bearing low alloy steels in a wide range of $H_2SO_4$ solution.

High Temperature SO2-gas Corrosion of Fe-18%Cr-10%Ni Steels for Coal-fired Power Plant (화력발전소용 Fe-18%Cr-10%Ni 강의 고온 SO2 가스 부식)

  • Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.5
    • /
    • pp.219-224
    • /
    • 2007
  • The corrosion characteristics of Fe-18Cr-10Ni steels were studied between $600^{\circ}C$ and $1000^{\circ}C$ in Ar+(0.2, 1)%$SG_2$ gas for up to 300 hr in order to employ Fe-18Cr-10Ni steels in the coal-fired power plants. The corrosion resistance of Fe-18Cr-10Ni steels was good due mainly to the high amount of Cr, which formed $Cr_2O_3$ from the initial corrosion stage. Fe in the steels corroded to mainly $Fe_2O_3$ and $Fe_3O_4$. Ni was not susceptible to corrosion under the current corrosion condition. Relatively thin, single-layered scales formed.

Corrosion Prevention of Cr steels in $SO_2$ Atmosphere for Electrial Power Plants (화력발전소의 장수명화를 위한 Cr 강(鋼)의 고온 $SO_2$가스 부식저감 대책 기술)

  • Lee, Dong-Bok;Choe, Jeong-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.114-115
    • /
    • 2007
  • The corrosion characteristics of Cr steels were investigated to protect Cr steels from the SO2-gas corrosion in the coal-fired power plant. The samples tested were low alloy ferritic steel (ASTM T22, 23), martensitic steel (ASTM T91, 92, 122), and austenitic stainless steel (ASTM 347HFG). The corrosion tests were performed between 600oC and 1000oC in Ar + (0.2, 1)%SO2 gas for 100 hr. Chromium was quite beneficial to corrosion resistance, while iron was not. The corrosion resistance increased in the order of T22, T23, T91, T92, T122, and 347HFG.

  • PDF