• 제목/요약/키워드: $SLC_2A_9$

검색결과 29건 처리시간 0.02초

Polymorphisms of SLC22A9 (hOAT7) in Korean Females with Osteoporosis

  • Ahn, Seong Kyu;Suh, Chang Kook;Cha, Seok Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권4호
    • /
    • pp.319-325
    • /
    • 2015
  • Among solute carrier proteins, the organic anion transporters (OATs) play an important role for the elimination or reabsorption of endogenous and exogenous negatively charged anionic compounds. Among OATs, SLC22A9 (hOAT7) transports estrone sulfate with high affinity. The net decrease of estrogen, especially in post-menopausal women induces rapid bone loss. The present study was performed to search the SNP within exon regions of SLC22A9 in Korean females with osteoporosis. Fifty healthy controls and 50 osteoporosis patients were screened for the genetic polymorphism in the coding region of SLC22A9 using GC-clamped PCR and denaturing gradient gel electrophoresis (DGGE). Six SNPs were found on the SLC22A9 gene from Korean women with/without osteoporosis. The SNPs were located as follows: two SNPs in the osteoporosis group (A645G and T1277C), three SNPs in the control group (G1449T, C1467T and C1487T) and one SNP in both the osteoporosis and control groups (G767A). The G767A, T1277C and C1487T SNPs result in an amino acid substitution, from synonymous vs nonsynonymous substitution arginine to glutamine (R256Q), phenylalanine to serine (F426S) and proline to leucine (P496L), respectively. The Km values and Vmax of the wild type, R256Q, P496L and F426S were 8.84, 8.87, 9.83 and $12.74{\mu}M$, and 1.97, 1.96, 2.06 and 1.55 pmol/oocyte/h, respectively. The present study demonstrates that the SLC22A9 variant F426S is causing inter-individual variation that is leading to the differences in transport of the steroid sulfate conjugate (estrone sulfate) and, therefore this could be used as a marker for certain disease including osteoporosis.

Glucose transport 1 deficiency presenting as infantile spasms with a mutation identified in exon 9 of SLC2A1

  • Lee, Hyun Hee;Hur, Yun Jung
    • Clinical and Experimental Pediatrics
    • /
    • 제59권sup1호
    • /
    • pp.29-31
    • /
    • 2016
  • Glucose transport 1 (GLUT-1) deficiency is a rare syndrome caused by mutations in the glucose transporter 1 gene (SLC2A1) and is characterized by early-onset intractable epilepsy, delayed development, and movement disorder. De novo mutations and several hot spots in N34, G91, R126, R153, and R333 of exons 2, 3, 4, and 8 of SLC2A1 are associated with this condition. Seizures, one of the main clinical features of GLUT-1 deficiency, usually develop during infancy. Most patients experience brief and subtle myoclonic jerk and focal seizures that evolve into a mixture of different types of seizures, such as generalized tonic-clonic, absence, myoclonic, and complex partial seizures. Here, we describe the case of a patient with GLUT-1 deficiency who developed infantile spasms and showed delayed development at 6 months of age. She had intractable epilepsy despite receiving aggressive antiepileptic drug therapy, and underwent a metabolic workup. Cerebrospinal fluid (CSF) examination showed CSF-glucose-to-blood-glucose ratio of 0.38, with a normal lactate level. Bidirectional sequencing of SLC2A1 identified a missense mutation (c.1198C>T) at codon 400 (p.Arg400Cys) of exon 9.

SLC9A6-related developmental and epileptic encephalopathy with spike-and-wave activation in sleep: A case report

  • Hye Ri Bae;Young Ok Kim
    • Journal of Genetic Medicine
    • /
    • 제19권2호
    • /
    • pp.100-104
    • /
    • 2022
  • The gene encoding solute carrier family 9 member 6 (SLC9A6) on Xq26.3 is associated with Christianson syndrome (CS) mimicking Angelman syndrome. In CS, developmental and epileptic encephalopathy (DEE) appears in about 20%, and DEE with spike-and-wave activation in sleep (SWAS) is reported only in several cases. A 10-year-old boy with DEE showed multidrug resistant focal seizures from 6 months of age. He had progressive microcephaly, regression, global developmental delay without speech, hyperkinesia, and truncal ataxia; he had a long thin face, esotropia, and happy demeanor. Brain magnetic resonance imaging demonstrated cerebellar atrophy. Electroencephalogram at 7.5 years of age showed nearly continuous diffuse paroxysms in slow wave sleep. The seizures were responsive to corticosteroids for a while. Trio whole exome sequencing exhibited a likely pathogenic variant of SLC9A6 in the proband and his asymptomatic mother: c.1194dup (p.Leu399AlafsTer12). This is a rare case report of CS with DEE-SWAS in a Korean patient.

소 난소로부터 회수난포란수의 극대화 방법 (Maximization of The Number of Follicular Oocytes Recovered from The Bovine Ovaries)

  • 유형진;최승철;이상호
    • 한국가축번식학회지
    • /
    • 제17권2호
    • /
    • pp.149-157
    • /
    • 1993
  • 소 초기배의 체외생산을 위한 소 난포란 회수를 극대화할 수 있는 방법을 확립하기 위해 여러 가지 방법에 의해 채취된 난자의 발생능력을 검토하였다. 전통적인 흡입법(대조구), 개발된 회수법(slicing) 및 이들을 결합한 방법(결합법)을 비교하였다. 총 245개의 난소로부터 1,641개의 난포란을 실험에 이용하였다. 회수된 난자는 TCM199과 소 태아혈청을 기초로 한 배양액에서 24시간 체외성숙시켜 급속염색법에 의해 핵성숙을 판별하고, 7% 에탄올에 의해 활성화된 처녀발생란의 전핵형성 유무에 의해 세포질 성숙을 평가하였다. 회수된 평균 난자수는 난소당 흡입법, slicing 및 결합법이 각각 1.87, 11.05 및 7.88개를 얻어 새로 개발된 slicing에 의해 회수율을 5.9배 (11.05/1.87) 증가시킬 수 있었다. 핵 성숙은 흡입법 92.9%, slicing 79.1%와 결합법 71.7%였다. 비록 흡입법에 의해 회수된 난자의 핵 성숙율이 높았지만 난소당 얻을 수 있는 성숙 난자의 수는 slicing할 경우 5배까지 증가시킬 수 있었다. 세포질 성숙의 지표인 전핵의 형성율은 대조구 75%, slicing 67%, 그리고 결합법 62.5%였다. 이같은 결과는 개발된 slicing법에 의해 도살장 난소로부터 보다 많은 수의 난자의 회수가 가능하며 이들의 핵성숙 및 세포질 성숙도 정상적으로 일어나며 난소당 전핵 초기배 수를 증가시킬 수 있음을 보여준 것이다. 아울러 증가된 난자수로 인하여 초기배의 생화학적 분석 및 외래유전자의 미세주입을 위한 지속적으로 안정된 초기배의 공급체계가 확립되었다.

  • PDF

Effect of hyperthermia on cell viability, amino acid transfer, and milk protein synthesis in bovine mammary epithelial cells

  • Zhou, Jia;Yue, Shuangming;Xue, Benchu;Wang, Zhisheng;Wang, Lizhi;Peng, Quanhui;Hu, Rui;Xue, Bai
    • Journal of Animal Science and Technology
    • /
    • 제64권1호
    • /
    • pp.110-122
    • /
    • 2022
  • The reduction of milk yield caused by heat stress in summer is the main condition restricting the economic benefits of dairy farms. To examine the impact of hyperthermia on bovine mammary epithelial (MAC-T) cells, we incubated the MAC-T cells at thermal-neutral (37℃, CON group) and hyperthermic (42℃, HS group) temperatures for 6 h. Subsequently, the cell viability and apoptotic rate of MAC-T cells, apoptosis-related genes expression, casein and amino acid transporter genes, and the expression of the apoptosis-related proteins were examined. Compared with the CON group, hyperthermia significantly decreased the cell viability (p < 0.05) and elevated the apoptotic rate (p < 0.05) of MAC-T cells. Moreover, the expression of heat shock protein (HSP)70, HSP90B1, Bcl-2-associated X protein (BAX), Caspase-9, and Caspase-3 genes was upregulated (p < 0.05). The expression of HSP70 and BAX (pro-apoptotic) proteins was upregulated (p < 0.05) while that of B-cell lymphoma (BCL)2 (antiapoptotic) protein was downregulated (p < 0.05) by hyperthermia. Decreased mRNA expression of mechanistic target of rapamycin (mTOR) signaling pathway-related genes, amino acid transporter genes (SLC7A5, SLC38A3, SLC38A2, and SLC38A9), and casein genes (CSNS1, CSN2, and CSN3) was found in the heat stress (HS) group (p < 0.05) in contrast with the CON group. These findings illustrated that hyperthermia promoted cell apoptosis and reduced the transport of amino acids into cells, which inhibited the milk proteins synthesis in MAC-T cells.

Effects of dietary spermine supplementation on cell cycle, apoptosis, and amino acid transporters of the thymus and spleen in piglets

  • Cao, Wei;Wu, Xianjian;Jia, Gang;Zhao, Hua;Chen, Xiaoling;Wu, Caimei;Cai, Jingyi;Wang, Jing;Liu, Guangmang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1325-1335
    • /
    • 2018
  • Objective: This study investigated whether spermine supplementation could regulate cell cycle, apoptosis, and amino acid transporter-related genes expression in the thymus and spleen of early weaned piglets. Methods: Eighty female piglets were randomly distributed to receive adequate nutrients supplemented with spermine (0.4 mmol/kg body weight/24 h) or to be provided with restricted nourishment supplemented with normal saline for 7 h or 3, 6, or 9 d in pairs. Results: Regardless of administration time, spermine supplementation significantly up-regulated cyclin A2 gene expression but down-regulated p21 and cyclin D3 mRNA levels in the thymus and spleen and reduced cyclin E2 gene expression in the thymus of piglets (p<0.05). Irrespective of the treatment period, the reduced Bax and caspase-3 gene expressions and improved Bcl-2 mRNA level were observed in the thymus and spleen of spermine-administrated piglets (p<0.05). Regardless of supplementation time, spermine intake significantly enhanced the expressions of amino acid transporter-related genes (SLC1A1, SLC1A5, SLC7A1, SLC7A7, and SLC15A1) in both thymus and spleen, as well as SLC7A9 in the spleen of piglets (p<0.05). In addition, extended spermine administration also markedly promoted cell proliferation, depressed apoptosis and modulated amino acid transport (p<0.05), and such effects were the greatest during prolonged spermine supplementation (6 d) compared to the other time periods (p<0.05). Conclusion: Spermine supplementation may regulate cell cycle during the G1/S phase, suppress apoptosis and modulate amino acid transport. A period of 6 d of spermine supplementation is required to produce the optimal effects on nutritional implications.

소금민감성 SLC12A3 유전자 다형성에 따른 나트륨섭취가 소아비만에 미치는 영향 (Effects of interaction between SLC12A3 polymorphism, salt-sensitive gene, and sodium intake on risk of child obesity)

  • 정주현;이명숙
    • Journal of Nutrition and Health
    • /
    • 제50권1호
    • /
    • pp.32-40
    • /
    • 2017
  • 소아기의 과체중 혹은 비만은 성인기의 만성질환의 onset 위험을 증가시키는 대사이상을 야기하므로 관련된 obesogenic 환경 (나트륨 섭취 등)을 제어할 필요가 있다. 본 연구에서는 소아기의 과도한 소금섭취가 신장의 재흡수 기능을 조절하는 SLC12A3기능장애로 이어져 고혈압 및 비만을 야기하는지를 확인하고자 하였다. 서울 구로구에 소재한 8~9세 초등학생 752명 (남학생: 379명 여학생: 373명)을 대상으로 BMI가 85 percentiles이상을 비만군으로, 이하를 정상군으로 분류하였다. SLC12A3 rs11643718 유전자형은 GG (wild)와 GA + AA로 분류하여 신체계측, 혈액검사, 식이조사 등을 비교분석하였다 대상자의 남아가 여아보다, 비만군이 정상군보다 신체지수, 혈액지수, 식사섭취량이 여아보다 높았다. 남녀 모두 비만군에서 높은 TG와 낮은 HDLc를 보여주었지만 비만한 남아는 혈압에, 비만한 여아는 인슐린저항성에 더 민감한 반응을 보였다. 비록 남녀차이는 있지만 비만군 및 정상군 모두에서 SLC12A3의 GA + AA형이 GG형보다 혈압과 체중이 높았다. GG 유전자형을 가지고 있는 소아는 혈중 LDLc, FBS, insulin등이 높거나 식이 콜레스테롤섭취가 증가할수록 비만이 될 위험도가 증가하였고 엽산의 섭취가 증가할수록 비만위험도는 감소하였다. 반면, GA + AA 유전자형을 가지고 있는 소아는 고나트륨 (> 4,000 mg/day)섭취시 비만위험도 (odd ratio)가 15.57배 증가하였고 남아 (22.84배)에서 더욱 위험도가 높았다. HDLc의 경우는 유전자형에 관계없이 증가할수록 비만위험도가 감소하였다. 결론적으로 SLC12A3 (rs11643718) 유전자의 A allele를 가진 형이 나트륨에 특이적으로 반응하여 과체중위험을 증가시키는 것으로 생각된다.

The effect of protease on growth performance, nutrient digestibility, and expression of growth-related genes and amino acid transporters in broilers

  • Park, Jae Hong;Lee, Sang In;Kim, In Ho
    • Journal of Animal Science and Technology
    • /
    • 제62권5호
    • /
    • pp.614-627
    • /
    • 2020
  • During the course of this trial, our team assessed the influence of protease upon the growth performance, the nutrient digestibility, and the expression of growth-related genes and amino acid transporters within the liver, muscle, and small intestines of broilers. During the first step, our team allocated 600 broilers into four dietary treatments for a period of 35 days in order to measure the growth performance and nutrient digestibility of the broilers selected. The separate treatments contained 10 replicates (15 birds per replicate). The treatments were composed of: 1) CON, basal diet; 2) T1, basal diet + 0.03% protease; 3) T2, basal diet + 0.06% protease; and 4) T3, basal diet + 0.09% protease. Next, the broiler chick sample tissue was harvested from the CON and T3 groups in order to conduct gene expression analysis following the feeding trials the broilers underwent. Our team discovered that the broilers fed protease diets possessed increased body weight and an average daily gain, but conversely, had lower feed conversion ratios when their dietary protease levels increased from 0% to 0.09% (p < 0.05). Additionally, significant linear improvements were identified among the nutrient digestibility of dry matter, crude protein, energy, and amino acids within broilers supplied with protease diets when contrasted and compared with broilers supplied with the basal diet (p < 0.05). In addition, the gene expression of the genes IGF1, IGF2, GH, and LEP in the liver, and the genes MYOD1 and MYOG in the breast muscles, was significantly increased after broilers were fed with a protease diet as compared to broilers that subsisted on a basal diet (p < 0.05). Protease supplementation also raised the expression levels within these amino acid transporters: SCL6A19, SLC7A1, SLC7A7, SLC7A2, SLC7A6, SLC7A9, and SLC15A1, located in the small intestine, when compared to the basal diet (p < 0.05). Our results suggest that protease supplementation in their diet improved the growth performance of broilers via an increase in the expression growth-related genes within broiler liver and muscle tissue. In addition, protease supplementation enhanced broiler digestibility via the upregulation of amino acid transporter expression within the small intestine.

개의 네 품종에서 기능 유전자들에 대한 정량적 발현 분석 (Quantitative Expression Analysis of Functional Genes in Four Dog Breeds)

  • 김정안;김상훈;이희은;정호임;남규휘;김민규;허재원;최봉환;김희수
    • 생명과학회지
    • /
    • 제25권8호
    • /
    • pp.861-869
    • /
    • 2015
  • 가축화된 동물종 중 하나인 개는, 다양한 목적을 위해 인간에 의하여 선택적으로 육종되었다. 개는 많은 품종을 갖고 있고, 특정한 행동과 형태를 갖도록 인공적으로 선택되어 왔다. 개들은 그들의 삶을 안내, 구조 혹은 탐지 등의 특수 목적에 대하여 인간에게 헌신하고 있다. 특수 목적견에게 요구되는 좋은 품성, 이를테면 온순함, 강건성, 그리고 인내심과 같은 특성은 그들의 특수 임무를 수행하는 데 필요하다. 많은 연구들이 우수한 특수 목적견의 선정을 위한 유전적 마커를 찾는 데 집중되었다. 본 연구에서는, 뇌에서 발현함으로써 기능하는 것으로 알려진 총 8개의 유전자(ABAT; 4-Aminobutyrate Aminotransferase, PLCB1; Phospholipase C, Beta 1, SLC10A4; Solute Carrier Family 10, Member 4, WNT1; Wingless-Type MMTV Integration Site Family, Member 1, BARX2; BarH-Like Homeobox 2, NEUROD6; Neuronal Differentiation 6, SEPT9; Septin 9 그리고 TBR1; T-Box, Brain, 1)들의 정량적인 발현 양상을 개의 네 품종의 뇌 조직에서 확인하였다. 특히, BARX2, SEPT9, SLC10A4, TBR1 그리고 WNT1 유전자들은 비글과 진돗개에서 많이 발현되는데 반하여, 삽살이와 세퍼드에서는 반대되는 발현 양상을 보여 주었다. 본 연구의 유전자들에 대한 Gene ontology (GO) 결정을 위하여 DAVID (Database for annotation, visualization and integrated discovery) 분석이 수행되었고, 이러한 유전자들이 뇌 발생과 개체의 지능에 중요한 기능을 제공할 것이라고 예상하였다. 결론적으로, 이러한 결과들을 통하여, 뇌에서의 기능과 관련된 인자들과 관련된 바이오마커를 발굴하는 데 중요한 단서를 제공해 줌과 동시에, 우수한 특수 목적견을 선발하는 데 도움을 줄 것이라 기대한다.

Genetics of Alzheimer's Disease

  • Kim, Jong Hun
    • 대한치매학회지
    • /
    • 제17권4호
    • /
    • pp.131-136
    • /
    • 2018
  • Alzheimer's disease (AD) related genes have been elucidated by advanced genetic techniques. Familial autosomal dominant AD genes founded by linkage analyses are APP, PSEN1, PSEN2, ABCA7, and SORL1. Genome-wide association studies have found risk genes such as ABCA7, BIN1, CASS4, CD33, CD2AP, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-DRB5-HLA-DRB1, INPP5D, MEF2C, MS4A6A/MS4A4E, NME8, PICALM, PTK2B, SLC24A4, SORL1, and ZCWPW1. ABCA7, SORL1, TREM2, and APOE are proved to have high odds ratio (>2) in risk of AD using next generation sequencing studies. Thanks to the promising genetic techniques such as CRISPR-CAS9 and single-cell RNA sequencing opened a new era in genetics. CRISPR-CAS9 can directly link genetic knowledge to future treatment. Single-cell RNA sequencing are providing useful information on cell biology and pathogenesis of diverse diseases.