• Title/Summary/Keyword: $SC-CO_2$ extraction

Search Result 45, Processing Time 0.023 seconds

Extraction of Triterpenoid Saponin (glycyrrhizin) from Liquorice by Co-solvent Modified Supercritical Carbon Dioxide (보조용매로 변형된 초임계 이산화탄소에 의한 감초의 triterpenoid saponin(glycyrrhizin)의 추출)

  • Kim, Hyun-Seok;Kim, Byung-Yong;Lim, Gio-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.1057-1061
    • /
    • 2002
  • Effects of modifier and soaking on extraction of triterpenoid saponin (glycyrrhizin) from liquorice were examined using supercritical $CO_2(SC-CO_2)$ at 50 MPa, $60^{\circ}C$, and flow rate of 3 mL/min, and glycyrrhizin content was analyzed by HPLC. Additon of undiluted methanol, ethanol or isopropanol as modifier to $SC-CO_2$ had little influence on extraction yield of glycyrrhizin. Soaking process using water increased the extraction yield as the sample to solvent ratio was increased. Addition of 70% methanol, ethanol or isopropanol to $SC-CO_2$ significantly increased the extraction yields, with 70% methanol resulting in the highest yield. When water at 90% (w/w) of sample weight was used for soaking, the extraction yield and rate increased, 70% ethanol-modified $SC-CO_2$ was almost equal to that obtained using 70% methanol.

Quality Properties of Conger Eel (Conger myriaster) Oils Extracted by Supercritical Carbon Dioxide and Conventional Methods (초임계 이산화탄소 및 유기용매를 이용하여 추출된 붕장어(Conger myriaster) 오일의 품질특성)

  • Park, Jin-Seok;Cho, Yeon-Jin;Jeong, Yu-Rin;Chun, Byung-Soo
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.275-282
    • /
    • 2019
  • In this study, the extraction of Conger myriaster oil by using supercritical carbon dioxide (SC-CO2) and organic solvent was investigated. The extraction conditions conducted for SC-CO2 varied for pressure (25, 30 MPa) and temperature (45, 55 ℃), while the SC-CO2 flow rate was kept constant during the experiment (27 g min-1) and hexane was used as a conventional organic solvent. The extraction yield indicated that the best extraction condition would be SC-CO2 at 55 ℃ and 30 MPa, resulting in the highest yield of 37.73 ± 0.14%. The oils were characterized for their fatty acid (FAs) composition using gas chromatography, while it was revealed that the major FAs were mystric acid, palmitoleic acid, oleic acid, electroosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The oxidation stability of the extracted C. myriaster oil was evaluated by measuring the acid value, peroxide value, and free fatty acid. The best oxidative stability was obtained from SC-CO2 extracted oil at 30 MPa and 55 ℃. There was a significant difference in the color properties of the SC-CO2 and hexane extracted oils, with the SC-CO2 extracted oil showing better chromaticity than the oil extracted using hexane. Extracting oils from C. myriaster with SC-CO2 could bring better economic benefits than using organic solvents. When supercritical carbon dioxide was used, there was no post-treatment process; thus, it was confirmed that this is a more environmentally friendly oil extraction method.

Extraction and Separation of Eicosapentaenoic Acid from Sardine by using Supercritical $CO_2$ Extraction (초임계 추출에 의한 정어리에서 Eicosapentaenoic Acid의 추출 및 분리)

  • 이병호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.22 no.5
    • /
    • pp.629-635
    • /
    • 1993
  • Full fat sardine oil is readily extracted with supercritical carbon dioxide($SC-CO_2$) at pressure of 5,000~8,000 psig. and temperature of 50~$80^{\circ}C$. Under these conditions $SC-CO_2$ has the density of fluid and diffusivity of gas. Therefore, equilibrium solubility is readily achieved in a column batch extractor which permits high gas flow rates. The results showed that extraction was higher at the pressure of 6,000 psig. and $60^{\circ}C$. Fish oil extracted with $SC-CO_2$ is lighter in color, smells less and contains less iron and phosphorus than hexane-extracted crude oil from the same sardine oil. Eicosapentaenoic acid($C_{20-5}$) in sardine oil was fractionated at 90.5% by the $SC-CO_2$ extractor with heat exchange.

  • PDF

Fatty Acid Composition and Stability of Extracted Mackerel Muscle Oil and Oil-Polyethylene Glycol Particles Formed by Gas Saturated Solution Process

  • Haque, A.S.M. Tanbirul;Asaduzzaman, A.K.M.;Chun, Byung-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.67-73
    • /
    • 2014
  • The oil in mackerel muscle was extracted using an environment friendly solvent, supercritical carbon dioxide (SC-$CO_2$) at a semibatch flow extraction process and an n-hexane. The SC-$CO_2$ was maintained at a temperature of $45^{\circ}C$ under pressures ranging from 15 to 25 MPa. The flow rate of $CO_2$ (27 g/min) was constant during the entire 2 h extraction period. The fatty acid composition of the oil was analyzed using gas chromatography (GC). Significant concentrations of eicosapentaenoic acid (EPA) acid and docosahexaenoic acid (DHA) acid were present in the SC-$CO_2$ extracted oil. The oil extracted using SC-$CO_2$ exhibited increased stability compared with n-haxane extracted oil. Particles of mackerel oil together with the biodegradable polymer, polyethylene glycol (PEG) were formed using a gas saturated solution process (PGSS) with SC-$CO_2$ in a thermostatted stirred vessel. Different temperatures ($45-55^{\circ}C$), pressures (15-25 MPa) and a nozzle size $400{\mu}m$ were used for PGSS with a 1 h reaction time. The stability of mackerel oil in the particles did not changed significantly.

Supercritical Carbon Dioxide Extraction of Beef and Pork for Low Lipid Sausage Manufacturing (저지방 소시지 제조를 위한 쇠고기와 돼지고기의 초임계 이산화탄소 추출)

  • Kwon, Young-An
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.306-311
    • /
    • 2000
  • Lipid and cholesterol were extracted from beef and pork by the supercritical carbon dioxide $(SC-CO_2)$ for the manufacturing of low-lipid and low-cholesterol sausage. The ranges of extraction temperature and pressure were from 35 to $55^{\circ}C$ and from 103 to 375 bar, respectively. $SC-CO_2$ extraction yield of beef lipid increased as extraction pressure increased and/or extraction temperature decreased, while extraction temperature was more influential on the cholesterol extraction than pressure condition. When lipid and cholesterol of freeze-dried beef with varied moisture contents were extracted, their solubilities increased as the moisture content reduced. The extraction of lipid and cholesterol from pork was shown the same tendency as the beef. The chunk type of beef shape was more suitable for the lipid and cholesterol extraction than the powder type of beef. The color of meat after $SC-CO_2$ extraction was lighter than the raw freeze dried meat because of the extraction of color pigments. After $SC-CO_2$ extraction, beef and pork were rehydrated and mixed with raw beef and pork containing lipid and cholesterol. Their mixing ratio up to 50 : 50 did not affect physical properties of the sausage compared with the control sausage.

  • PDF

Extraction of${\beta}-carotene$ from Carrot by Supercritical Carbon Dioxide (초임계이산화탄소에 의한 당근 중의 ${\beta}-carotene$ 추출)

  • Lim, Sang-Bin;Jwa, Mi-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.414-419
    • /
    • 1995
  • ${\beta}-carotene$ was extracted from freeze-dried carrot by supercritical carbon dioxide $(SC-CO_2)$ and mixtures of $CO_2$ doped with ethanol or methanol as a cosolvent at temperatures of 40 to $60^{\circ}C$ and pressures of 138 to 276 bar. Solubility of ${\beta}-carotene$ in $SC-CO_2$ increased with the increase of extraction pressure and the decrease of extraction temperature. The highest solubility observed was $4.90\;{\mu}g/g\;CO_2\;for\;{\alpha}-carotene\;and\;0.604\;{\mu}g/g\;CO_2$ for ${\alpha}-carotene\;at\;40^{\circ}C$ and 276 bar. Addition of ethanol increased the solubility being the largest increase of 82% using a mixture of $CO_2$ and 17.4% ethanol. $SC-CO_2$ extraction can be used to selectively obtain natural carotenoids, free of solvent residuals, which can be used as food additives.

  • PDF

Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 감초 중의 glabridin 추출)

  • Cho Yun-Kyoung;Kim Hyun-Seok;Kim Ju-Won;Lee Sang-Yun;Kim Woo-Sik;Ryu Jong-Hoon;Lim Gio-Bin
    • KSBB Journal
    • /
    • v.19 no.6 s.89
    • /
    • pp.427-432
    • /
    • 2004
  • The purpose of this study is to investigate the feasibility of a cosolvent-modified supercritical $CO_2\;(scCO_2)$ extraction technique for the production of licorice extracts with high levels of glabridin. The effects of various parameters such as the type and amount of modifiers, extraction temperature ($40{\sim}80^{\circ}C$) and pressure ($10{\sim}50.0\;MPa$) on the extraction efficiency were examined at a fixed flow rate of 1 mL/min. The organic solvent extraction with pure methanol was also conducted for a quantitative comparison with the $scCO_2$ extraction. The recovery of glabridin from licorice was found to be extremely small for pure $scCO_2$. However, the addition of modifiers such as ethanol and acetone to $scCO_2$ resulted in a significant improvement in the recovery of glabridin. The recovery of glabridin was observed to increase with pressure at a constant temperature. Furthermore, the purity of the glabridin obtained from the $scCO_2$ extraction was higher compared with the organic solvent extraction.

The Effects of Supercritical Carbon Dioxide on the Extraction of Perilla Oil (초임계 이산화탄소가 들기름의 추출에 미치는 영향)

  • Lee, Min-Jung;Kim, Ki-Hong;Bae, Jae-Oh
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1439-1443
    • /
    • 2006
  • This study was performed on the effects of extraction temperature, pressure, time on apparent solubility and extraction yield of perilla oil and tocopherol, and color and fatty acid composition of the residue in supercritical carbon dioxide $(SC-CO_2)$ extraction. Apparent solubility of perilla oil and tocopherol increased with the increase of $CO_2$ density and was found to strongly depend on extraction pressure rather than extraction temperature. The extract yield of tocopherol in $SC-CO_2$ extraction increased with an increase of temperature and decreased with an increase of pressure and extraction time. The perilla oil apparent solubility of dried perilla powder for $60\sim180$ min at $40^{\circ}C/276$ bar increased with an extraction time, on the other hands, tocopherol apparent solubility decreased. As the increase of $CO_2$ density, less redness and yellowness increased. Fatty acid composition of perilla oil showed that perilla oil extracted by $SC-CO_2$ had better unsaturated fatty acid and decreased in saturated fatty acid. $SC-CO_2$ extraction offers a safe natural method for gaining perilla oil from dried perilla seeds powder.

Tow-stage Extraction of Milk Fat by Supercritical Carbon Dioxide

  • Sangbin Lim;Jwa, Mi-Kyung;Kwak, Hae-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.202-206
    • /
    • 1997
  • To develop mil fat fractions with desirable physico-chemical properties, anhydrous milk fat (AMF) was fractionated by one- and two-stage extractions using supercritical $CO_2$(SC-$CO_2$). Tow-stage extraction of AMF was performed by first producing tow fractions, an extract and a residue at 4$0^{\circ}C$/241bar, which were subsequently used as the feed for an extraction at 6$0^{\circ}C$/241bar and 4$0^{\circ}C$/345bar, and separated into five and four fractions, respectively, based one extraction time. These fractions were quantified and analyzed for fatty acids and physico-chemical properties. SHort-chain (C4~C8) fatty acids in extract fractions from an extract were 200~150% compared with those of the original AF. Long-chain (C14~C18) fatty acids in extract fractions from a residue were 118~141%. The ratio of unsaturated fatty acids in the residue fraction was 131%. Melting point ranged from 22 to 43$^{\circ}C$, iodine value 21.8 to 36.9, and saponification value 255 to 221 in the extract and residue fractions. SC-$CO_2$ fractionation of AMF by two-stage extraction offers the possibility of developing ractions with discrete fatty acid compositions and physico-chemical properties such as melting point, iodine value and saponification value.

  • PDF

The pH Reduction of the Recycled Aggregate Originated from the Waste Concrete by the scCO2 Treatment (초임계 이산화탄소를 이용한 폐콘크리트 순환골재의 중성화)

  • Chung, Chul-woo;Lee, Minhee;Kim, Seon-ok;Kim, Jihyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • Batch experiments were performed to develop the method for the pH reduction of recycled aggregate by using $scCO_2$ (supercritical $CO_2$), maintaining the pH of extraction water below 9.8. Three different aggregate types from a domestic company were used for the $scCO_2$-water-recycled aggregate reaction to investigate the low pH maintenance of aggregate during the reaction. Thirty five gram of recycled aggregate sample was mixed with 70 mL of distilled water in a Teflon beaker, which was fixed in a high pressurized stainless steel cell (150 mL of capacity). The inside of the cell was pressurized to 100 bar and each cell was located in an oven at $50^{\circ}C$ for 50 days and the pH and ion concentrations of water in the cell were measured at a different reaction time interval. The XRD and SEM-EDS analyses for the aggregate before and after the reaction were performed to identify the mineralogical change during the reaction. The extraction experiment for the aggregate was also conducted to investigate the pH change of extracted water by the $scCO_2$ treatment. The pH of the recycled aggregate without the $scCO_2$ treatment maintained over 12, but its pH dramatically decreased to below 7 after 1 hour reaction and maintained below 8 for 50 day reaction. Concentration of $Ca^{2+}$, $Si^{4+}$, $Mg^{2+}$ and $Na^+$ increased in water due to the $scCO_2$-water-recycled aggregate reaction and lots of secondary precipitates such as calcite, amorphous silicate, and hydroxide minerals were found by XRD and SEM-EDS analyses. The pH of extracted water from the recycled aggregates without the $scCO_2$ treatment maintained over 12, but the pH of extracted water with the $scCO_2$ treatment kept below 9 of pH for both of 50 day and 1 day treatment, suggesting that the recycled aggregate with the $scCO_2$ treatment can be reused in real construction sites.