• Title/Summary/Keyword: $Rb_1$

Search Result 1,249, Processing Time 0.031 seconds

Effect of rbST Administrations at Artificial Insemination on Conception and Parturition Rates in Hanwoo (한우 인공수정시 rbST 투여가 수태 및 분만율에 미치는 영향)

  • Han M. H.;Choi S. H.;Choi Y. H.;Kim H. J.;Cho S. R.;Choi C.Y.;Ryu I. S.;Son D. S.;Yeon S. H.;Woo J. S.;Kweon U. G.;Yoon K. Y.;Chang B. S.
    • Journal of Embryo Transfer
    • /
    • v.20 no.2
    • /
    • pp.177-184
    • /
    • 2005
  • This study was conducted to investigate the effects of recombinant bovine somatotropin (rbST) injection on conception and parturition rates in normal or repeat breeding Hanwoo. We treated 462 cows containing 79 repeat-breeding cows of multiparous and allocating 5 treatment groups. Treatment 1 (T1) was injection of 2ml saline (for pseudo treatment), T2 was one injection of rbST 250mg into the tailhead region at the estrus, T3 was twice injection of rbST 250mg both at the time of insemination and again 10 to 14 day later, T4 was once injection of rbST 500mg at insemination and T5 was twice injection of 500mg rbST both at the time of insemination and again 10 to 14day later respectively. In rbST treated groups, timed artificial inseminations (TAI) were performed fellowing estrus synchronization. 100 us GnRH was injected into the scapula region on Day 0, 25mg $PGF_2{\alpha}$ was injected on Day 7 for degeneration of corpus luteum (CL) and 100ug GnRH was injected for inducing the synchronization. The results are as fellows; When normal Hanwoo were inseminated once with rbST administration, the pregnancy rate of T2 $(67.5\pm18.48\%)$ were higher than control $(52.4\pm9.72\%)$, while the pregnancy rate of T4 $(63.3\pm5.77\%)$ were significantly higher (p.<0.05) than control $(39.3\pm12.89\%)$ in repeat breeder Hanwoo. The parturition rates of normal Hanwoo were no differences among the treatments but were significant different in repeat breeder Hanwoo (p<0.05). When the estrous was induced by Ovsynch and inseminated once with rbST administration, the pregnancy rates of T2 was $12.5\%$ higher than control in normal Hanwoo, T4 $(80.0\%)$ was highest among the treatments (p<0.05) in repeat breeder Hanwoo. When normal Hanwoo were inseminated once with rbST administration, the pregnant period was $282.7\~284.8$ days and the body weight was $25.1\~25.9kg$, there were no difference among the treatments. The ratio of sex was almost same without T4 (male vs. female=18:9). In repeat breeder Hanwoo, pregnant period was 280.4~289.3 day and body weight was $23.0\~26.6kg$, it had no difference among the treatments. The sex ratio were similar to normal Hanwoo except T4 (M : F=2 : 8). In conclusion, the pregnancy and parturition rate by once insemination could be improved by the administration of rbST 250mg in normal Hanwoo or 500mg in repeat breeder Hawoo.

Effects of Combined Application of Rice Bran and Chemical Fertilizer on the Phytochemical Contents of Rice

  • Kang, Mi-Young;Kim, Joo-Hee;Heo, Kyu-Hong;Cho, Sun-Shik;Esguerra, Manuel Q.;Rico, Cyren M.;Son, Tae-Kwon;Lee, Sang-Chul
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.65-71
    • /
    • 2008
  • The effect of rice bran (RB) applied alone or in combination with chemical fertilizer at different application rate on the phytochemical and antioxidant properties of rice was investigated. The treatments were 3 levels of RB namely: 200% RB (500 kg $10a^{-1}$), 100% RB (250 kg $10a^{-1}$), 50% RB (125 kg $10a^{-1}$), Recommended fertilizer dose (RF: $N-{P_2}{O_5}{K_2}O$, 11-5.5-4.8 kg $10a^{-1}$) combined with each RB, Half-recommended fertilizer dose (HRF: $N-{P_2}{O_5}{K_2}O$, 5.5-2.75-2.4 kg $10a^{-1}$) combined with each RB, RF and HRF applied at 1, 5, 10 days before rice transplanting (DBT). The parameters investigated were antioxidant, phytosterol and fatty acid contents. Results showed that the antioxidant property and phytosterol contents were high at 10 DBT HRF plus RB, 5 DBT RF plus RB, and 1 DBT 100 and 200% RB. However, total polyphenols increased from 10 to 1 DBT. In the case of fatty acids, no general trend was observed between treatments at different application times. Linoleic acid was high at 10 DBT HRF plus RB while linolenic acid was not affected at different application times. Palmitoeic and oleic acids were not also affected at 5 and 10 DBT. Saturated fatty acids were not also affected by any treatment at different application times except for palmitic acid.Most parameters obtained higher values at 100 and 200% RB treatments in 1 DBT.

Human Safety of rbST Contained in Milk (우유중 함유된 rbST의 인체에 대한 안전성)

  • 송지용
    • Proceedings of the Korean Society of Food Hygiene and Safety Conference
    • /
    • 1994.12a
    • /
    • pp.15-26
    • /
    • 1994
  • Bovine somatotropin(bST) or bovine growth hormone (bGH) is a protein of 191 amino acids produced by the anterior pituitary gland of cattle. Recombinant bovine somatotropin(rbST) is biosynthetic versions of the naturally occurring pituitary hormone in cows. The use of rbST in dairy cows promises to improve the efficiency of milk production around the world. Using recombinant DNA technology, bST can now be produced in commercial quantities. The recombinant bST(rbST) is biologically identical to the found in the bovine pituitary. Milk from rbST-treated cows has been found to have the same nutritional value and composition as milk from untreated cows. In November of 1993, rbST finally was approved by the FDA, nearly 10 years after filing a licence applica-tion. rbST has been one of the most extensively studied animal drug products to be reviewed by the agency. Three scientific facts will help to reassure the public about the safety of the milk suppy.: 1. rbST has no biological activity in humans when indigested orally or when given by intramuscular injection. 2. Insulin-like growth factor 1(IGF-1) is not orally active. Any changes in IGF-1 levels in milk are well within normal variation and are lower than those reported in human milk. 3. All cow's milk contains bST, and no significant change in bST levels in milk occurs as a result of giving cows supplemental bST. Based on the scientific evidence, the public can be confident that milk and meat from rbST-treated cows is safe to consumers.

  • PDF

Crystallographic Study on Zeolite 4A Reacted with Rubidium Vapor (루비듐 증기와 반응한 제올라이트 4A에 대한 결정학적 연구)

  • Song, Seong-Hwan;Kim, Yang;Han, Young-Wook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.99-107
    • /
    • 1991
  • Three fully dehydrated fully Rb+-exchanged zeolite A single crystals have been prepared by the reduction of all Na+ ions in dehydrated Na12-A by rubidium vapor at various experimental conditions (220 $\leq$ T $\leq$ 33$0^{\circ}C$, 2 $\leq$ t $\leq$24 hours, and 0.1 $\leq$ PRb $\leq$ 1.1 Torr). Their structures were determined by single-crystal X-ray diffraction methods in the space group {{{{ RHO }}m3m (a=12.245(3) A) at 22(1)$^{\circ}C$. In these structures 12.6(2) to 13.5(2) Rb species are found per unit cell, more than the 12 Rb+ ions needed to balance the anionic charge of the zeolite framework, indication that the sorption of Rb0 has occurred. In each structure, three Rb+ ions per unit cell are located at the centers of 8-rings. Beyond that, the fractional occupancies observed are simply explained by two unit cell arrangments. In one, two Rb+ ions are in the sodalite unit near opposite 6-rings, six are in the large cavity near 6-ring, and one is in the large cavity near a 4-ring. In the other, three Rb species in the sodalite cavity (forming a triangle 3.7 A on an edge) each bond (3.4 A) through a 6-ring to an Rb species in the large cavity to give an (Rb6)4+ cluster of symmetry 3m (C3V). Five additional Rb+ ions fill the remaining large-cavity 6-ring sites.

  • PDF

Drug-biomacromolecule interaction V

  • Kim, Chong-Kook;Ahn, Hae-Young;Han, Byung-Hoon;Hong, Soon-Keun
    • Archives of Pharmacal Research
    • /
    • v.6 no.1
    • /
    • pp.63-68
    • /
    • 1983
  • The binding properties of three ginsenosides, Rb$_{1}$, Rc and Re, to bovine and human serum albumins have been examined by fluorescence probe technique. 1-anilinonphathalene-8-sulfonate (ANS) was used as the fluorescence probe. Protopanaxatriol glycoside, Re, did not quench the fluorscence of ANS to the bovine serum albumin. Competitive bindings between protopanaxadiol glycosides, Rb$_{1}$ and Rc are both 3.3 . The binding constants for Rb$_{1}$ and Rc with bovine serum albumin were 1.91 * 10$_{4}$M$_{-1}$ AND 1.04 * 10$^{[-994]}$ M$^{-1}$ , respectively. The ginsenosides, Rb$_{1}$, Rc and Re did not quench the fluorescence of ANS bound to human serum albumin.

  • PDF

Bioconversion of Ginsenoside Rb1 to the Pharmaceutical Ginsenoside Compound K using Aspergillus usamii KCTC 6954 (Aspergillus usamii KCTC 6954에 의한 ginsenoside Rb1로 부터 의약용 소재인 compound K로의 생물학적 전환)

  • Jo, Mi Na;Jung, Ji En;Yoon, Hyun Joo;Chang, Kyung Hoon;Jee, Hee Sook;Kim, Kee-Tae;Paik, Hyun-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.4
    • /
    • pp.347-353
    • /
    • 2014
  • ${\beta}$-Glucosidase from Aspergillus usamii KCTC 6954 was used to convert ginsenoside Rb1 to compound K, which has a high bio-functional activity. The enzymatic activities during culturing for 15 days were determined using ${\rho}$-nitrophenyl-${\beta}$-glucopyranoside. The growth rate of the strain and the enzymatic activity were maximized after 6 days (IU; $175.93{\mu}M\;ml^{-1}\;min^{-1}$). The activities were maximized at $60^{\circ}C$ in pH 6.0. During culturing, Rb1 was converted to Rd after 9 d and then finally converted to compound K at 15 d. In the enzymatic reaction, Rb1 was converted to the ginsenoside Rd within 1 h of reaction time and compound K could be detected after 8 h. As a result, this study demonstrates that $Rb1{\rightarrow}Rd{\rightarrow}F2{\rightarrow}$compound K is the main metabolic pathway catalyzed by ${\beta}$-glucosidase and that ${\beta}$-glucosidase is a feasible option for the development of specific bioconversion processes to obtain minor ginsenosides such as Rd and compound K.

Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria

  • Park, Seong-Eun;Na, Chang-Su;Yoo, Seon-A;Seo, Seung-Ho;Son, Hong-Seok
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.36-42
    • /
    • 2017
  • Background: Some differences have been reported in the biotransformation of ginsenosides, probably due to the types of materials used such as ginseng, enzymes, and microorganisms. Moreover, most microorganisms used for transforming ginsenosides do not meet food-grade standards. We investigated the statistical conversion rate of major ginsenosides in ginsenosides model culture during fermentation by lactic acid bacteria (LAB) to estimate possible pathways. Methods: Ginsenosides standard mix was used as a model culture to facilitate clear identification of the metabolic changes. Changes in eight ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, and Rg2) during fermentation with six strains of LAB were investigated. Results: In most cases, the residual ginsenoside level decreased by 5.9-36.8% compared with the initial ginsenoside level. Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased during fermentation. By contrast, Rd was maintained or slightly increased after 1 d of fermentation. Rg1 and Rg2 reached their lowest values after 1-2 d of fermentation, and then began to increase gradually. The conversion of Rd, Rg1, and Rg2 into smaller deglycosylated forms was more rapid than that of Rd from Rb1, Rb2, and Rc, as well as that of Rg1 and Rg2 from Re during the first 2 d of fermentation with LAB. Conclusion: Ginsenosides Rb1, Rb2, Rc, and Re continuously decreased, whereas ginsenosides Rd, Rg1, and Rg2 increased after 1-2 d of fermentation. This study may provide new insights into the metabolism of ginsenosides and can clarify the metabolic changes in ginsenosides biotransformed by LAB.

Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1

  • Vo, Hoang Tung;Cho, Jae Youl;Choi, Yong-Eui;Choi, Yong-Soon;Jeong, Yeon-Ho
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.304-313
    • /
    • 2015
  • Background: Ginsenoside Rg3 is a promising anticancer agent. It is usually produced by heat treatment of ginseng, in which ginsenoside Rb1 is the major ginsenoside. A kinetic study was conducted to optimize ginsenoside Rg3 production by the heat treatment of ginsenoside Rb1. Methods: Ginsenoside Rb1 was heated using an isothermal machine at $80^{\circ}C$ and $100^{\circ}C$ and analyzed using HPLC. The kinetic parameters were calculated from the experimental results. The activation energy was estimated and used to simulate the process. The optimized parameters of ginsenoside Rg3 production are suggested based on the simulation. Results: The rate constants were $0.013h^{-1}$ and $0.073h^{-1}$ for the degradation of ginsenosides Rb1 and Rg3 at $80^{\circ}C$, respectively. The corresponding rate constants at $100^{\circ}C$ were $0.045h^{-1}$ and $0.155h^{-1}$. The estimated activation energies of degradation of ginsenosides Rb1 and Rg3 were 69.2 kJ/mol and 40.9 kJ/mol, respectively. The rate constants at different temperatures were evaluated using the estimated activation energies, and the kinetic profiles of ginsenosides Rb1 and Rg3 at each temperature were simulated based on the proposed kinetic model of consecutive reaction. The optimum strategies for producing ginsenoside Rg3 from ginsenoside Rb1 are suggested based on the simulation. With increased temperature, a high concentration of ginsenoside Rg3 is formed rapidly. However, the concentration decreases quickly after the reaching the maximal concentration value. Conclusion: The optimum temperature for producing ginsenoside Rg3 should be the highest temperature technically feasible below $180^{\circ}C$, in consideration of the cooling time. The optimum reaction time for heat treatment is 30 min.

Immuno-stimulating Activities of Mannose-rich Polysaccharides Isolated from Korean Black Raspberry Wine (복분자주에서 분리한 Mannan 다당의 면역증진 활성)

  • Lee, Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.343-349
    • /
    • 2012
  • Polysaccharides isolated from Korean black raspberry wine were examined for their chemical properties and immuno-modulating activities. The molecular mass of RB-1b-I, the main polysaccharide in black raspberry wine, was estimated as 180 kDa and it contained a significant proportion of mannose (76.8%) and 4 different minor component sugars such as galactose (15.8%), arabinose (3.8%), glucose (2.6%) and rhamnose (1.2%). This indicated that RB-1b-I was mainly present as a mannan, which had originated from the cell walls of fermenting yeasts. On the other hand, RB-1b-I induced high levels of macrophage activation as well as mitogenicity regarding murine splenocytes in vitro. The intravenous administration of RB-1b-I significantly augmented NK cytotoxicity against YAC-1 tumor cells. RB-1b-I also showed potent anti-complementary activity in a dose-dependent manner via both alternative and classical pathways. Results indicated that Korean black raspberry wine contains peculiar polysaccharides which provide beneficial immuno-stimulating activities for human health.

Effect of Microwave Treatment on Korean Ginseng (고려인삼의 마이크로파 처리 효과)

  • Lee, Jae-Hag;Kum, Jun-Seok
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.3
    • /
    • pp.405-410
    • /
    • 2010
  • The effect of microwave treatment on Korean ginseng was studied by measuring the changes in moisture, crude lipid, crude ash, crude protein, total dietary fiber and saponin contents, as well as changes in density, color and microstructure. Korean ginseng was treated with 100 or 200 watts of microwaves for 1 or 3 hrs, respectively, followed by drying using an oven at $60^{\circ}C$ for 96 hrs. The moisture contents decreased to 13.12~10.77% from an initial 76.26%. The amounts of lipid and ash were reduced in proportion to the time of microwave treatment and level of microwave power. The amount of protein in ginseng after microwave treatment did not significantly change. The amount of total dietary fiber increased after microwave treatment and the color of dried ginseng became dark. The amounts of ginsenoside-$Rb_1$, $Rb_2+Rb_3$, Rc, Rd, Re, Rf, $Rg_1$, $Rg_2+Rh_1$ and $Rg_3$ were reduced after treatment with 100 watts of microwave radiation for 1 and 3. The amounts of ginsenoside-$Rb_1$, Rd, Re, Rf, $Rg_1$, $Rg_2+Rh_1$ and $Rg_3$ after treatment with 200 watts of microwave radiation for 1 and 3 hr also reduced. On the other hand, the amounts of ginsenoside-$Rb_2+Rb_3$ and Rc after treatment of ginseng with 200 watts of microwave radiation for 1 and 3 hrs were increased.