• Title/Summary/Keyword: $R_{SAI}$ Index

Search Result 16, Processing Time 0.034 seconds

Development of Estimation Method of Sensing Ability According to Smart Sensor Types (지적센서 형태에 따른 센싱능력 분석기법 개발)

  • Hwang, Seong-Youn;Hong, Dong-Pyo;Kang, Hee-Young;Park, Jun-Hong;Hong, Jin-Who
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.330-335
    • /
    • 2000
  • This paper deals with sensing ability of smart sensor that has a sensing ability of distinguish materials. We have developed new signal processing method that have distinguish different materials. We made the two type of smart sensors for experiment. The first type of smart sensor is H2 type. The second type of smart sensor is HH type. The smart sensor was developed for recognition of material. And then we developed estimation method of sensing ability of smart sensors. The first method(Sensing Ability Index) is developed for H2 smart sensor. The second method($R_{SAI}$ Index) is developed for HH smart sensor. We estimated sensing ability of smart sensor with new SAI and $R_{SAI}$ method. This paper describes our primary study for a new method of estimate sensing ability of smart sensor, which is need for precision work system. This is a study of dynamic characteristics of smart sensor according to frequency and displacement changing with new SAI and $R_{SAI}$ method. Experiment and analysis are executed for proper dynamic sensing condition. First, we developed advanced smart sensors. Second, we develop new SAI and $R_{SAI}$ methods that have a sensing ability of distinguish materials. Dynamic characteristics of smart sensor are evaluated through new SAI and $R_{SAI}$ method relatively. We can use the new SAI and $R_{SAI}$ method for finding materials. Applications of this method are finding abnormal condition of object(auto-manufacturing), feeling of object(medical product), robotics, safety diagnosis of structure, etc.

  • PDF

Development Smart Sensor & Estimation Method to Recognize Materials (대상물 인식을 위한 지능센서 및 평가기법 개발)

  • Hwang, Seong-Youn;Hong, Dong-Pyo;Chung, Tae-Jin;Kim, Young-Moon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.73-81
    • /
    • 2006
  • This paper describes our primary study for a new method of recognizing materials, which is need for precision work system. This is a study of dynamic characteristics of smart sensors, new method$(R_{SAI})$ has the sensing ability of distinguishing materials. Experiment and analysis are executed for finding the proper dynamic sensing condition. First, we developed advanced smart sensor. We made smart sensors for experiment. The type of smart sensor is HH type. The smart sensor was developed for recognition of material. Second, we develop new estimation methods that have a sensing ability of distinguish materials. Dynamic characteristics of sensor are evaluated through new recognition index$(R_{SAI})$ that ratio of sensing ability index. Distinguish of object is executed with $R_{SAI}$ method relatively. We can use the $R_{SAI}$ method for finding materials. Applications of this method are finding abnormal condition of object (auto-manufacturing), feeling of object(medical product), robotics, safety diagnosis of structure, etc.

Estimation of the Sensing Ability of HH Smart Sensor According to Acceleration Value Changing (가속도 값 변화에 따른 HH 스마트센서의 센싱능력 평가)

  • Hwang, Seong-Youn;Hong, Dong-Pyo;Park, Jun-Hong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.527-532
    • /
    • 2001
  • In this paper, we will propose the new method that estimates the sensing ability of HH smart sensor. We have developed a new signal processing method that can distinguish among different materials relatively. The HH smart sensor was developed for recognition of materials. We made the HH smart sensor in our experiment. Then, we estimated the ability to recognize objects according to acceleration value. We estimated the sensing ability of HH smart sensor with the $R_{SAI}$ method. Experiments and analysis were executed to estimate the ability to recognize objects according to acceleration value changing. Dynamic characteristics of HH smart sensor were evaluated relatively through a new $R_{SAI}$ method that uses the power spectrum density. Applications of this method are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safety diagnosis of structure, etc.

  • PDF

Estimation of Sensing Ability According to Smart Sensor Surface Types(I) (스마트센서의 표면 형태에 따른 센싱능력 평가(I))

  • 황성연;홍동표;강희용;박준홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.318-322
    • /
    • 2001
  • This paper deals with sensing ability of smart sensor that has a sensing ability to distinguish materials according to surface types of smart sensor. We have developed a new signal processing method that can distinguish among different materials. The smart sensor was developed for recognition of materials. We made two types of smart sensors in our experiment. Then, we estimated the ability to recognize objects according to smart sensor type. We estimated the sensing ability of smart sensor with the $R_{SAI}$ method. Experiments and analysis were executed to estimate the ability to recognize objects according to surface types of smart sensor. Sensing ability of smart sensors was evaluated relatively through a new $R_{SAI}$ method. Applications of smart sensors are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safety diagnosis of structure, etc.etc.

  • PDF

Estimation of the Sensing Ability of HH Smart Sensor According to Acceleration Value Changing (가속도 값 변화에 따른 지능센서(HH)의 센싱능력 평가)

  • 황성연;홍동표;김홍건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2004
  • A new method that estimates the sensing ability of HH smart sensor is proposed. The new signal processing method have been developed that can distinguish among different materials relatively. The HH smart sensor was developed far recognition of materials. The HH smart sensor was made for experiment. Then, it was estimated the ability to recognize objects according to acceleration value. The sensing ability of HH smart sensor has been estimated with the $R_{SAI}$ method. Experiments and analysis were executed to estimate the ability to recognize objects according to acceleration value changing. Dynamic characteristics of HH smart sensor were evaluated relatively through a new $R_{SAI}$ method that uses the power spectrum density. Applications of this method are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safety diagnosis of structure, etc.

Analysis of the Ability of Recognize Objects for Smart Sensor According to Frequency Changing ( I ) (주파수 변화에 따른 HH 스마트센서의 센싱능력 평가(I))

  • 황성연;홍동표;박준홍
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.922-926
    • /
    • 2001
  • This paper deals with sensing ability of smart sensor that has a sensing ability to distinguish materials according to frequency changing. We have developed a new signal processing method that can distinguish among different materials. The smart sensor was developed for recognition of materials. We estimated the sensing ability of smart sensor with the $R_{SAI}$ method according to frequency changing. Experiments and analysis were executed to estimate the ability to recognize objects according to frequency changing. Sensing ability of smart sensors was evaluated relatively through a new $R_{SAI}$ method. Applications of smart sensors are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safety diagnosis of structure, etc.etc.

  • PDF

Analysis of the Recognition Ability of Objects for the Smart Sensor According to the Input Condition Changing ( I ) (입력 조건에 따른 지능센서의 대상물 인식능력 분석( I ))

  • Hwang, Seong-Youn;Hong, Dong-Pyo;Chae, Hee-Chang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.48-55
    • /
    • 2002
  • This paper deals with the sensing ability of the smart sensor that has the sensing ability to distinguish materials according to the input condition changing. This is a study of dynamic characteristics of sensor. We have developed a new signal processing method that can distinguish among different materials. The smart sensor was developed for recognition of materials. Experiments and analysis were executed to estimate ability to recognize objects according to the input condition. First, we developed the advanced smart sensor. Second, we developed the new method, which has the capability sensing of different materials. Dynamic characteristics of the smart sensor were evaluated relatively through a new $R_{SAI}$ method. According to frequency changing, influence of the smart sensor are evaluated through a new recognition index ($R_{SAI}$) that ratio of sensing ability index. Applications of this method are for finding abnormal conditions of objects (auto-manufacturing), feeling of objects (medical product), robotics, safely diagnosis of structure, etc.

Analysis of the Ability of Recognize Objects for Smart Sensor According to Frequency Changing (주파수 변화에 따른 지적센서의 대상물 인식능력 분석)

  • 황성연;홍동표;강희용;박준홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.23-26
    • /
    • 2000
  • This paper descrtbcs our prlmary study for a new mncthod of recogninng materials. which is need for precision work system. This IS a study of dynarnlc characteristics of sensor. new melhod ($R_{SAI}$) has thc sensing ability of distinguishing materials. Experiment and annlysis are executed for proper dynamic scnslng condition. First. we developed advanced smart sensor Second, we develop new methods that have a sensing ability of distinguish matarialsAccording to frequency changing. mtluence of smart sensor are evaluated through new recognition Index ($R_{SAI}$) that ratioof sensing ability index. Disungush of object is cxucuted wllh RsA, method relalivcly according to liequency changing. Wecan use the RsAl for finding materids. Applfciltionr of thls method are linding abnormal condition of obicct (automanufacturing).keling ofobject (medlcal product). tobolics, safety diagnosis of structure, etc

  • PDF

Stabilization of expansive soil using industrial wastes

  • Mohanty, Soumendra K.;Pradhan, Pradip K.;Mohanty, Chitta R.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.111-125
    • /
    • 2017
  • Swelling and shrinkage characteristics of expansive fine grained soil cause volumetric changes followed by distress and damage to the structures. Soil stabilization can be explained as the alteration of the soil properties by chemical, mechanical or any other means in order to enhance the engineering properties of the soil. Utilization of industrial wastes in soil stabilization is cost effective and environment friendly. This paper presents an experimental study on stabilization of expansive soil using industrial wastes, viz. fly ash and dolochar. The paper includes the evaluation of engineering properties like unconfined compressive strength and California bearing ratio (CBR) of expansive soil collected from Balasore district of Odisha stabilized with fly ash and dolochar in different proportions and to predict the influence of these additives on engineering properties and strength characteristics of expansive soil. Both fly ash and dolochar were found to increase the CBR and decrease many index properties such as liquid limit, plastic limit, plasticity index, swelling index and UCS, thus enhancing the strength parameters of expansive soil.

Effect of Diluents on the Cold Storage of Sperm in Sea Urchin, Hemicentrotus pulcherrimus (말똥성게, Hemicentrotus pulcherrimus 정자의 냉장보존에 미치는 희석액의 효과)

  • Kho Kang-Hee;Kang Kyoung Ho;Kim Jae-Min
    • Development and Reproduction
    • /
    • v.7 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • A series of experiments were conducted to compare the effects of various diluents in cold storage on the sea urchin, Hemicentrotus pulcherimus sperm. Various diluents of glucose solutions, artificial sea water(ASW) and 50% ASW were used to store the sperm at 4$^{\circ}C$. The storage effect was evaluated using sperm activity index(SAI), survival rate of sperm and fertilization rate to egg. ASW and 1.2 M glucose were found to be better diluents which maintained high motility and survival rate of sperm f3r a storage period of 30 days. Optimal pH of diluent to store the sperm at 4$^{\circ}C$ is 7.0∼8.0. In order to keep high SAI and survival rate of sperm, addition of 400 ppm neomycin into the diluent revealed the best storage results.

  • PDF