• 제목/요약/키워드: $RRT^*$ sampling method

검색결과 7건 처리시간 0.018초

샘플링 기법의 보완을 통한 RRT* 기반 온라인 이동 계획의 성능 개선 (Improvement of Online Motion Planning based on RRT* by Modification of the Sampling Method)

  • 이희범;곽휘권;김준원;이춘우;김현진
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.192-198
    • /
    • 2016
  • Motion planning problem is still one of the important issues in robotic applications. In many real-time motion planning problems, it is advisable to find a feasible solution quickly and improve the found solution toward the optimal one before the previously-arranged motion plan ends. For such reasons, sampling-based approaches are becoming popular for real-time application. Especially the use of a rapidly exploring random $tree^*$ ($RRT^*$) algorithm is attractive in real-time application, because it is possible to approach an optimal solution by iterating itself. This paper presents a modified version of informed $RRT^*$ which is an extended version of $RRT^*$ to increase the rate of convergence to optimal solution by improving the sampling method of $RRT^*$. In online motion planning, the robot plans a path while simultaneously moving along the planned path. Therefore, the part of the path near the robot is less likely to be sampled extensively. For a better solution in online motion planning, we modified the sampling method of informed $RRT^*$ by combining with the sampling method to improve the path nearby robot. With comparison among basic $RRT^*$, informed $RRT^*$ and the proposed $RRT^*$ in online motion planning, the proposed $RRT^*$ showed the best result by representing the closest solution to optimum.

최적 경로 계획을 위한 RRT*-Smart 알고리즘의 개선과 2, 3차원 환경에서의 적용 (Improvement of RRT*-Smart Algorithm for Optimal Path Planning and Application of the Algorithm in 2 & 3-Dimension Environment)

  • 탁형태;박천건;이상철
    • 한국항공운항학회지
    • /
    • 제27권2호
    • /
    • pp.1-8
    • /
    • 2019
  • Optimal path planning refers to find the safe route to the destination at a low cost, is a major problem with regard to autonomous navigation. Sampling Based Planning(SBP) approaches, such as Rapidly-exploring Random Tree Star($RRT^*$), are the most influential algorithm in path planning due to their relatively small calculations and scalability to high-dimensional problems. $RRT^*$-Smart introduced path optimization and biased sampling techniques into $RRT^*$ to increase convergent rate. This paper presents an improvement plan that has changed the biased sampling method to increase the initial convergent rate of the $RRT^*$-Smart, which is specified as m$RRT^*$-Smart. With comparison among $RRT^*$, $RRT^*$-Smart and m$RRT^*$-Smart in 2 & 3-D environments, m$RRT^*$-Smart showed similar or increased initial convergent rate than $RRT^*$ and $RRT^*$-Smart.

DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments

  • Chao, Nan;Liu, Yong-kuo;Xia, Hong;Peng, Min-jun;Ayodeji, Abiodun
    • Nuclear Engineering and Technology
    • /
    • 제51권3호
    • /
    • pp.825-836
    • /
    • 2019
  • One of the most challenging safety precautions for workers in dynamic, radioactive environments is avoiding radiation sources and sustaining low exposure. This paper presents a sampling-based algorithm, DL-RRT*, for minimum dose walk-path re-planning in radioactive environments, expedient for occupational workers in nuclear facilities to avoid unnecessary radiation exposure. The method combines the principle of random tree star ($RRT^*$) and $D^*$ Lite, and uses the expansion strength of grid search strategy from $D^*$ Lite to quickly find a high-quality initial path to accelerate convergence rate in $RRT^*$. The algorithm inherits probabilistic completeness and asymptotic optimality from $RRT^*$ to refine the existing paths continually by sampling the search-graph obtained from the grid search process. It can not only be applied to continuous cost spaces, but also make full use of the last planning information to avoid global re-planning, so as to improve the efficiency of path planning in frequently changing environments. The effectiveness and superiority of the proposed method was verified by simulating radiation field under varying obstacles and radioactive environments, and the results were compared with $RRT^*$ algorithm output.

샘플링 범위 제한을 이용한 원 및 구 장애물 환경에서의 RRT* 계열 알고리즘 성능 개량 (Performance Improvement of RRT* Family Algorithms by Limiting Sampling Range in Circular and Spherical Obstacle Environments)

  • 이상일;박종호;임재성
    • 한국항공우주학회지
    • /
    • 제50권11호
    • /
    • pp.809-817
    • /
    • 2022
  • 무인 로봇과 UAV의 발달로 경로 계획 알고리즘의 필요성이 높아지고 있으며 다양한 환경에서 잘 작동하는 RRT* 알고리즘이 여러 분야에서 유용하게 활용되고 있다. RRT* 알고리즘에 다양한 변형을 통해 더 좋은 경로를 생성하기 위한 많은 연구가 진행되고 있으며, 이러한 노력 덕분에 알고리즘의 성능 향상은 거듭되는 중이다. 본 논문은 이러한 연구의 연장선에서 샘플링 범위의 제한을 이용하여 효율적인 경로를 생성하는 방법을 제안한다. 장애물이 있는 환경에서 경로가 장애물에 근접할수록 최적의 경로에 가까워진다는 발상에 근거하여 더 짧은 경로를 얻기 위해 장애물 근처에 노드를 생성한다. 또한 경로가 장애물을 휘감는 경우 변경된 재연결 방법을 통해 빠르게 직선화된 경로를 얻는다. 기존의 알고리즘과 제안하는 방법을 비교 분석하여 성능을 검증하고, 무인항공기의 운동학 모델을 도입하여 생성된 경로를 추적할 수 있음을 확인한다.

층화이중추출을 이용한 결합 확률화응답기법 (A Combined Randomized Response Technique Using Stratified Two-Phase Sampling)

  • 홍기학
    • 응용통계연구
    • /
    • 제17권2호
    • /
    • pp.303-310
    • /
    • 2004
  • 본 연구에서는 민감한 모집단에 대한 자료수집 방법으로 직접 질문 방법 인 Black-Box 방법과 간접 질문 방법인 확률화응답기법(RRT)의 결합적 방법을 제시하였고, 층화이중추출방법을 이용하여 모수를 추정하였다. 또한, 주어진 추정량의 효율성을 Mangat과 Singh 추정량과 비교 분석하였다.

비용 인지 RRT 경로 계획 알고리즘 (A Cost-Aware RRT Planning Algorithm)

  • 서정훈;오성회
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.150-159
    • /
    • 2012
  • In this paper, we propose a cost-aware Rapidly-exploring Random Tree (RRT) path planning algorithm for mobile robots. A mobile robot is presented with a cost map of the field of interest and assigned to move from one location to another. As a robot moves, the robot is penalized by the cost at its current location according to the cost map. The overall cost of the robot is determined by the trajectory of the robot. The goal of the proposed cost-aware RRT algorithm is to find a trajectory with the minimal cost. The cost map of the field can represent environmental parameters, such as temperature, humidity, chemical concentration, wireless signal strength, and stealthiness. For example, if the cost map represents packet drop rates at different locations, the minimum cost path between two locations is the path with the best possible communication, which is desirable when a robot operates under the environment with weak wireless signals. The proposed cost-aware RRT algorithm extends the basic RRT algorithm by considering the cost map when extending a motion segment. We show that the proposed algorithm gives an outstanding performance compared to the basic RRT method. We also demonstrate that the use of rejection sampling can give better results through extensive simulation.

확률비례추출법에 의한 확률화응답기법에 관한 연구 (A Study on the Randomized Response Technique by PPS Sampling)

  • 이기성
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.69-80
    • /
    • 2006
  • 본 연구에서는 매우 민감한 조사에서 모집단이 집락의 크기가 서로 다른 여러 개의 집락으로 구성되어 있을 때, 집락의 크기에 비례하게 추출확률을 부여하는 확률비례추출법(probability proportional to size : pps)을 이용한 확률화응답기법을 제안하고자 한다. 민감한 속성에 대한 모수의 추정치와 분산 및 분산추정량을 구하여 이론적 체계를 구축하고, 확률비례추출법에 의한 확률화응답기법과 등확률 2단계 추출법에 의한 확률화응답기법의 효율성을 비교해 보고자 한다. 또한, 실제조사를 통해 제안한 확률비례추출법에 의한 확률화응답기법에 대한 실용화의 타당성을 검토하고자 한다.