• 제목/요약/키워드: $R-{\theta}$

검색결과 335건 처리시간 0.025초

SOME NEW IDENTITIES CONCERNING THE HORADAM SEQUENCE AND ITS COMPANION SEQUENCE

  • Keskin, Refik;Siar, Zafer
    • 대한수학회논문집
    • /
    • 제34권1호
    • /
    • pp.1-16
    • /
    • 2019
  • Let a, b, P, and Q be real numbers with $PQ{\neq}0$ and $(a,b){\neq}(0,0)$. The Horadam sequence $\{W_n\}$ is defined by $W_0=a$, $W_1=b$ and $W_n=PW_{n-1}+QW_{n-2}$ for $n{\geq}2$. Let the sequence $\{X_n\}$ be defined by $X_n=W_{n+1}+QW_{n-1}$. In this study, we obtain some new identities between the Horadam sequence $\{W_n\}$ and the sequence $\{X_n\}$. By the help of these identities, we show that Diophantine equations such as $$x^2-Pxy-y^2={\pm}(b^2-Pab-a^2)(P^2+4),\\x^2-Pxy+y^2=-(b^2-Pab+a^2)(P^2-4),\\x^2-(P^2+4)y^2={\pm}4(b^2-Pab-a^2),$$ and $$x^2-(P^2-4)y^2=4(b^2-Pab+a^2)$$ have infinitely many integer solutions x and y, where a, b, and P are integers. Lastly, we make an application of the sequences $\{W_n\}$ and $\{X_n\}$ to trigonometric functions and get some new angle addition formulas such as $${\sin}\;r{\theta}\;{\sin}(m+n+r){\theta}={\sin}(m+r){\theta}\;{\sin}(n+r){\theta}-{\sin}\;m{\theta}\;{\sin}\;n{\theta},\\{\cos}\;r{\theta}\;{\cos}(m+n+r){\theta}={\cos}(m+r){\theta}\;{\cos}(n+r){\theta}-{\sin}\;m{\theta}\;{\sin}\;n{\theta},$$ and $${\cos}\;r{\theta}\;{\sin}(m+n){\theta}={\cos}(n+r){\theta}\;{\sin}\;m{\theta}+{\cos}(m-r){\theta}\;{\sin}\;n{\theta}$$.

CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS

  • Cheon, Jeoung-Soo;Kim, Eun-Jeong;Lee, Chang-Ik;Shin, Yun-Ho
    • 대한수학회보
    • /
    • 제48권2호
    • /
    • pp.277-290
    • /
    • 2011
  • We show that the ${\theta}$-prime radical of a ring R is the set of all strongly ${\theta}$-nilpotent elements in R, where ${\theta}$ is an automorphism of R. We observe some conditions under which the ${\theta}$-prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (${\theta}$, ${\theta}^{-1}$)-(semi)primeness of ideals of R.

A CLASS OF MAPPINGS BETWEEN Rz-SUPERCONTINUOUS FUNCTIONS AND Rδ-SUPERCONTINUOUS FUNCTIONS

  • Prasannan, A.R.;Aggarwal, Jeetendra;Das, A.K.;Biswas, Jayanta
    • 호남수학학술지
    • /
    • 제39권4호
    • /
    • pp.575-590
    • /
    • 2017
  • A new class of functions called $R_{\theta}$-supercontinuous functions is introduced. Their basic properties are studied and their place in the hierarchy of strong variants of continuity, which already exist in the literature, is elaborated. The class of $R_{\theta}$-supercontinuous functions properly contains the class of $R_z$-supercontinuous functions [39] which in turn properly contains the class of $R_{cl}$-supercontinuous functions [43] and so includes all cl-supercontinuous (clopen continuous) functions ([38], [34]) and is properly contained in the class of $R_{\delta}$-supercontinuous functions [24].

Ptr,s)-CLOSED SPACES AND PRE-(ωr,s)t-θf-CLUSTER SETS

  • Afsan, Bin Mostakim Uzzal;Basu, Chanchal Kumar
    • 대한수학회논문집
    • /
    • 제26권1호
    • /
    • pp.135-149
    • /
    • 2011
  • Using (r, s)-preopen sets [14] and pre-${\omega}_t$-closures [6], a new kind of covering property $P^t_{({\omega}_r,s)}$-closedness is introduced in a bitopological space and several characterizations via filter bases, nets and grills [30] along with various properties of such concept are investigated. Two new types of cluster sets, namely pre-(${\omega}_r$, s)t-${\theta}_f$-cluster sets and (r, s)t-${\theta}_f$-precluster sets of functions and multifunctions between two bitopological spaces are introduced. Several properties of pre-(${\omega}_r$, s)t-${\theta}_f$-cluster sets are investigated and using the degeneracy of such cluster sets, some new characterizations of some separation axioms in topological spaces or in bitopological spaces are obtained. A sufficient condition for $P^t_{({\omega}_r,s)}$-closedness has also been established in terms of pre-(${\omega}_r$, s)t-${\theta}_f$-cluster sets.

Edge-Maximal 𝜃k+1-Edge Disjoint Free Graphs

  • Jaradat, Mohammed M.M.;Bataineh, Mohammed S.A.
    • Kyungpook Mathematical Journal
    • /
    • 제54권1호
    • /
    • pp.23-30
    • /
    • 2014
  • For two positive integers r and s, $\mathcal{G}$(n; r; ${\theta}_s$) denotes to the class of graphs on n vertices containing no r of edge disjoint ${\theta}_s$-graphs and f(n; r; ${\theta}_s$) = max{${\varepsilon}(G)$ : G ${\in}$ $\mathcal{G}$(n; r; ${\theta}_s$)}. In this paper, for integers r, $k{\geq}2$, we determine f(n; r; ${\theta}_{2k+1}$) and characterize the edge maximal members in G(n; r; ${\theta}_{2k+1}$).

토릭렌즈의 표면 곡률 특성 연구 (Properties of a Surface Curvature in Toric Lens)

  • 박상안;김용근
    • 한국안광학회지
    • /
    • 제6권2호
    • /
    • pp.65-70
    • /
    • 2001
  • 두 개의 토로이드 면이 서로 직각인 토릭렌즈의 두 곡률의 합($C_x+C_y$)는 $$C_x+C_y=\frac{x^2+y^2}{2r_1}+\frac{x^2}{2}(\frac{1}{r_2}-\frac{1}{r_1})$$이며, 사축인 토릭렌즈의 두 곡률의 합 ($C_a+C_b$)은 $$(C_a+C_b)=\frac{x^2cos^2{\alpha}_1}{2r_1}+\frac{x^2cos^2{\alpha}_2}{2r_2}+\frac{y^2sin^2{\alpha}_1}{2r_1}+\frac{y^2sin^2{\alpha}_2}{2r_2}$$이다. $(C_1+C_2)+(C_1+C_2)_{90^{\circ}}$는 구면의 곡률 합$S_{S_1}+S_{S_2}$과 같은 값을 얻었다. 표면 곡률(Cx, Cy) 값을 포함한 사축 토릭렌즈의 합성 굴절력의 parameter S, C, ${\theta}$ 값을 다음과 같다. $$S=(n-1)\[\frac{C_x}{x^2}+\frac{C_y}{y^2}\]-\frac{C}{2},\;C=-\frac{2(n-1)}{sin2{\theta}}\[\frac{C_x}{x^2}+\frac{C_y}{y^2}\]$$ $${\theta}=\frac{1}{2}tan^{-1}\[-\frac{{C_xy^2sin2{\theta}_1}+{C_yx^2sin2{\theta}_2}}{{C_xy^2cos2{\theta}_1}+{C_yx^2cos2{\theta}_2}}\]$$.

  • PDF

SOME RESULTS CONCERNING ($\theta,\;\varphi$)-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung Yong-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권4호
    • /
    • pp.207-215
    • /
    • 2003
  • Let R be a prime ring with characteristic different from two and let $\theta,\varphi,\sigma,\tau$ be the automorphisms of R. Let d : $R{\rightarrow}R$ be a nonzero ($\theta,\varphi$)-derivation. We prove the following results: (i) if $a{\in}R$ and [d(R), a]$_{{\theta}o{\sigma},{\varphi}o{\tau}}$=0, then $\sigma(a)\;+\;\tau(a)\;\in\;Z$, the center of R, (ii) if $d([R,a]_{\sigma,\;\tau)\;=\;0,\;then\;\sigma(a)\;+\;\tau(a)\;\in\;Z$, (iii) if $[ad(x),\;x]_{\sigma,\;\tau}\;=\;0;for\;all\;x\;\in\;RE$, then a = 0 or R is commutative.

  • PDF

Scaling Factor를 이용한 토양수분특성곡선 추정모형 (Model Equations to Estimate the Soil Water Characteristics Curve Using Scaling Factor)

  • 엄기철;송관철;유관식;손연규;이상은
    • 한국토양비료학회지
    • /
    • 제28권3호
    • /
    • pp.227-232
    • /
    • 1995
  • 토양수분장력을 실측하지 않고도 토양수분장력을 추정하기 위하여, 입경분포가 서로 다른 10가지 토성의 134점 토양시료를 채취하여 토양수분함량과 토양 수분장력을 측정한 후 scaling technique을 이용하여 토양수분특성곡선을 추정할 수 있는 모형을 개발하고, 별도의 205개 토양에 대하여 이 모형에 대한 실효성 검정을 한 결과는 다음과 같다. 1. 토양수분함량 측정치(${\theta}i$)에 대하여 토양수분장력이 10KPa 때와 1.5MPa 때의 수분함량을 이용하여 ${\theta}^*=[{\theta}i-{\theta}(1.5MPa)]$/$[{\theta}(10KPa)-{\theta}(1.5MPa)]$와 같이 scale변화된 수분함량(${\theta}^*$)을 구하도록 하였다. 2. Scale변환된 수분함량(${\theta}^*$)을 이용하여 토양수분 특성곡선을 구한 결과 토성별 계수의 차이가 거의 없이 H[unit : 0.1MPa]=$0.13{\cdot}({\theta}^*)^{-2.04}$로 나타낼 수 있었다. 3. 포장용수량과 위조점에서의 수분함량은 scale변환된 모래([S]) 및 미사함량([Si])과 유기물함량([OM])을 다음 식에 의해 그 추정이 가능하였다. ${\theta}(10KPa)=26.80-3.99ln[S]+2.36{\sqrt{[Si]}}+2.88[OM]$ ($R=0.81^{**}$) ${\theta}(1.5KPa)=15.75-2.86ln[S]+0.55{\sqrt{[Si]}}+0.70[OM]$ ($R=0.76^{**}$) 위 식에 의해 205개 토양별로 $\theta$(10KPa) 및 $\theta$(1.5MPa)를 측정한 후 이 값에 의거하여 산출된 ${\theta}^*$를 추정식에 적용하여 ${\theta}(1/30MPa)$를 추정하고 이 추정치와 실측치를 1 : 1 line상에서 비교해 본 결과, 실측치와 추정치는 아주 근사한 값($R=0.85^{**}$)을 나타내었다.

  • PDF

Sequential Confidence Set of the Mean Vector of a Multivariate Distribution

  • Kim, Sung Lai
    • 충청수학회지
    • /
    • 제5권1호
    • /
    • pp.87-97
    • /
    • 1992
  • Sequential procedure with ${\beta}$-protection for the mean vector ${\mu}(\theta)$ of a p(> 1)-variate multivariate distribution $P_{\theta}$, ${\theta}{\in}{\Theta}$, with covariance matrix ${\sum}(\theta)$ is considered when the only nuisance parameters is ${\sum}(\theta)$. We obtain a confidence set for ${\mu}(\theta)$ with coverage probability condition and ${\beta}$-protection at ${\mu}-{\delta}(\mu)$ for some imprecision function ${\delta}:\mathbb{R}^p{\rightarrow}\mathbb{R}^p$.

  • PDF