• Title/Summary/Keyword: $Q_m$

Search Result 2,911, Processing Time 0.031 seconds

Implementation and Analysis of Quantum Computing Concepts on IBM Q (IBM Q를 이용한 양자 컴퓨팅 개념의 구현 및 분석)

  • Yoon, Jinho;Moon, Bong-kyo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.9-12
    • /
    • 2019
  • 본 논문에서는 IBM사의 Q를 이용하여 몇 가지 양자 컴퓨팅 개념을 구현해보고 검증한다. Superdense coding과 Quantum teleportation, Bell's Inequailty를 python 기반의 코드로 구현하고 실제 ibmqx4 양자 컴퓨터로 실행한 결과, Superdense coding은 약 85%의 정확도, Quantum teleportation은 96.7%의 정확도를 보이고 Bell's Inequailty가 성립하지 않는 것을 확인하였다.

ON THE CONSTRUCTION OF SELF-DUAL CODES OVER GF(2m) USING SYMMETRIC GENERATOR MATRICES

  • HAN, SUNGHYU
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.703-715
    • /
    • 2021
  • There are several methods for constructing self-dual codes. Among them, the building-up construction is a powerful method. Recently, Kim and Choi proposed special building-up constructions which use symmetric generator matrices for self-dual codes over GF(q), where q is odd. In this paper, we study the same method when q is even.

A Power Manager supporting automatic sleep for Sensors in Nano-Q+ (Nano-Q+에서 센서의 자동슬립을 지원하는 전력 매니저)

  • Bokdong Choi;Seongbae Eun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.996-997
    • /
    • 2008
  • 배터리를 사용하는 센서노드의 전력 소모를 줄이기 위해 많은 방법들이 제안되어 있다. 본 논문에서는 MCU 및 센서의 전력을 관리하는 전력 매니저를 제안한다. 센서의 타입을 설정하고 제안되어 있는 센서의 추상화를 추가한 매니저를 제안한다. Nano-Q+가 스케줄링할 때 센서의 타입을 판단하여 전원을 관리 할 수 있도록 한다.

A VARIANT OF THE QUADRATIC FUNCTIONAL EQUATION ON GROUPS AND AN APPLICATION

  • Elfen, Heather Hunt;Riedel, Thomas;Sahoo, Prasanna K.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.6
    • /
    • pp.2165-2182
    • /
    • 2017
  • Let G be a group and $\mathbb{C}$ the field of complex numbers. Suppose ${\sigma}:G{\rightarrow}G$ is an endomorphism satisfying ${{\sigma}}({{\sigma}}(x))=x$ for all x in G. In this paper, we first determine the central solution, f : G or $G{\times}G{\rightarrow}\mathbb{C}$, of the functional equation $f(xy)+f({\sigma}(y)x)=2f(x)+2f(y)$ for all $x,y{\in}G$, which is a variant of the quadratic functional equation. Using the central solution of this functional equation, we determine the general solution of the functional equation f(pr, qs) + f(sp, rq) = 2f(p, q) + 2f(r, s) for all $p,q,r,s{\in}G$, which is a variant of the equation f(pr, qs) + f(ps, qr) = 2f(p, q) + 2f(r, s) studied by Chung, Kannappan, Ng and Sahoo in [3] (see also [16]). Finally, we determine the solutions of this equation on the free groups generated by one element, the cyclic groups of order m, the symmetric groups of order m, and the dihedral groups of order 2m for $m{\geq}2$.

Analysis of Driving Characteristics and Memory Effect by Occupation Area Evaluation Method of Charged Particle Type Display Device (대전입자형 디스플레이 소자의 점유면적 평가방법에 의한 구동특성 및 메모리 효과 분석)

  • Kim, Jin-Sun;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.669-673
    • /
    • 2011
  • The charged particle type display is a kind of the reflectivity type display and shows an image by absorption and reflection of external light source, which has keep an image without additional electric power because of bistability. In this paper, we made a device whose cell gap is $56\;{\mu}m$ and also analyzed driving and memory characteristics by applied driving voltages. As a result, we found that the driving voltage and memory effect depend on q/m(charge to mass ratio) of charged particle. In this case of breakdown voltage, the devices showed degradation of reflectivity and memory effect due to irregular movement of overcharged particles. In addition, contrast ratio of the device varies with memory effect. Thus, we consider that device needs uniform q/m for improvement of electric and optical properties and memory effect.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

Solving the Gale-Shapley Problem by Ant-Q learning (Ant-Q 학습을 이용한 Gale-Shapley 문제 해결에 관한 연구)

  • Kim, Hyun;Chung, Tae-Choong
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.165-172
    • /
    • 2011
  • In this paper, we propose Ant-Q learning Algorithm[1], which uses the habits of biological ants, to find a new way to solve Stable Marriage Problem(SMP)[3] presented by Gale-Shapley[2]. The issue of SMP is to find optimum matching for a stable marriage based on their preference lists (PL). The problem of Gale-Shapley algorithm is to get a stable matching for only male (or female). We propose other way to satisfy various requirements for SMP. ACS(Ant colony system) is an swarm intelligence method to find optimal solution by using phermone of ants. We try to improve ACS technique by adding Q learning[9] concept. This Ant-Q method can solve SMP problem for various requirements. The experiment results shows the proposed method is good for the problem.

Reaction Characterization of a Photosynthetic Bacterium Containing $Q_{10}$ ($Q_{10}$ 함유 광합성세균의 반응특성)

  • Jeong, Soo Kyoung;Kim, Joong Kyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.198-200
    • /
    • 2007
  • Cultivation of a $Q_{10}$-producing photosynthetic bacterium, Rhodobacter sphaeroids, was carried out in a 1-L flask to characterize its cellular growth reaction. The result of experiment showed that dissolve oxygen in the broth was depleted within 7 h. ORP decreased with decrease of DO, and recovered somewhat with increase of pH. The growth of R. spahaeroids reached at late-log phase in 140 h of reaction. The final pH and dry-cell weight were 7.62 and 2.2 mg/mL, respectively. The $Q_{10}$ content in the final broth was 2.35 mg/g dry cell weight, which was higher than that obtained in tube culture.

  • PDF

A CHARACTERIZATION OF GROUPS PSL(3, q) BY THEIR ELEMENT ORDERS FOR CERTAIN q

  • Darafsheh, M.R.;Karamzadeh, N.S.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.579-591
    • /
    • 2002
  • Let G be a finite group and $\omega$(G) the set of elements orders of G. Denote by h($\omega$(G)) the number of isomorphism classes of finite groups H satisfying $\omega$(G)=$\omega$(H). In this paper, we show that for G=PSL(3, q), h($\omega$(G))=1 where q=11, 12, 19, 23, 25 and 27 and h($\omega$(G)=2 where q = 17 and 29.

THE COMPETITION INDEX OF A NEARLY REDUCIBLE BOOLEAN MATRIX

  • Cho, Han Hyuk;Kim, Hwa Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2001-2011
    • /
    • 2013
  • Cho and Kim [4] have introduced the concept of the competition index of a digraph. Similarly, the competition index of an $n{\times}n$ Boolean matrix A is the smallest positive integer q such that $A^{q+i}(A^T)^{q+i}=A^{q+r+i}(A^T)^{q+r+i}$ for some positive integer r and every nonnegative integer i, where $A^T$ denotes the transpose of A. In this paper, we study the upper bound of the competition index of a Boolean matrix. Using the concept of Boolean rank, we determine the upper bound of the competition index of a nearly reducible Boolean matrix.