• 제목/요약/키워드: $Poincar{\acute{e}}$ series

검색결과 4건 처리시간 0.018초

ON THE MINUS PARTS OF CLASSICAL POINCARÉ SERIES

  • Choi, SoYoung
    • 충청수학회지
    • /
    • 제31권3호
    • /
    • pp.281-285
    • /
    • 2018
  • Let $S_k(N)$ be the space of cusp forms of weight k for ${\Gamma}_0(N)$. We show that $S_k(N)$ is the direct sum of subspaces $S_k^+(N)$ and $S_k^-(N)$. Where $S_k^+(N)$ is the vector space of cusp forms of weight k for the group ${\Gamma}_0^+(N)$ generated by ${\Gamma}_0(N)$ and $W_N$ and $S_k^-(N)$ is the subspace consisting of elements f in $S_k(N)$ satisfying $f{\mid}_kW_N=-f$. We find generators spanning the space $S_k^-(N)$ from $Poincar{\acute{e}}$ series and give all linear relations among such generators.

ON SOME TWISTED COHOMOLOGY OF THE RING OF INTEGERS

  • Lee, Seok-Min
    • 충청수학회지
    • /
    • 제30권1호
    • /
    • pp.77-102
    • /
    • 2017
  • As an analogy of $Poincar{\acute{e}}$ series in the space of modular forms, T. Ono associated a module $M_c/P_c$ for ${\gamma}=[c]{\in}H^1(G,R^{\times})$ where finite group G is acting on a ring R. $M_c/P_c$ is regarded as the 0-dimensional twisted Tate cohomology ${\hat{H}}^0(G,R^+)_{\gamma}$. In the case that G is the Galois group of a Galois extension K of a number field k and R is the ring of integers of K, the vanishing properties of $M_c/P_c$ are related to the ramification of K/k. We generalize this to arbitrary n-dimensional twisted cohomology of the ring of integers and obtain the extended version of theorems. Moreover, some explicit examples on quadratic and biquadratic number fields are given.

MODULAR INVARIANTS UNDER THE ACTIONS OF SOME REFLECTION GROUPS RELATED TO WEYL GROUPS

  • Ishiguro, Kenshi;Koba, Takahiro;Miyauchi, Toshiyuki;Takigawa, Erika
    • 대한수학회보
    • /
    • 제57권1호
    • /
    • pp.207-218
    • /
    • 2020
  • Some modular representations of reflection groups related to Weyl groups are considered. The rational cohomology of the classifying space of a compact connected Lie group G with a maximal torus T is expressed as the ring of invariants, H*(BG; ℚ) ≅ H*(BT; ℚ)W(G), which is a polynomial ring. If such Lie groups are locally isomorphic, the rational representations of their Weyl groups are equivalent. However, the integral representations need not be equivalent. Under the mod p reductions, we consider the structure of the rings, particularly for the Weyl group of symplectic groups Sp(n) and for the alternating groups An as the subgroup of W(SU(n)). We will ask if such rings of invariants are polynomial rings, and if each of them can be realized as the mod p cohomology of a space. For n = 3, 4, the rings under a conjugate of W(Sp(n)) are shown to be polynomial, and for n = 6, 8, they are non-polynomial. The structures of H*(BTn-1; 𝔽p)An will be also discussed for n = 3, 4.