• Title/Summary/Keyword: $P_2O_5$

Search Result 7,235, Processing Time 0.037 seconds

Electrochemical properties of $Li_2O-P_2O_5-V_2O_5$ Glass-ceramics by Addition of $Bi_2O_3$ ($Bi_2O_3$첨가에 따른 $Li_2O-P_2O_5-V_2O_5$ 결정화유리의 전기화학적 특성변화)

  • Son, Muong-Mo;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.797-800
    • /
    • 2002
  • Instead of a solution process producing amorphous $LiV_3O_8$ form, we prepared Lithium vanadate glass by melting $Li_2O-P_2O_5-V_2O_5$ and $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$ composition in pt. crucible and by quenching on the copper plate. From the crystallization of $Li_2O-P_2O_5-V_2O_5$ and $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$, we could abtain glass-ceramics having crystal phase, LiV3O8 from glass matrix. The material heat-treated at lower-temperature, $250^{\circ}C$ had less crystalline and lower capacity, But the material heat-treadted at higher-temperature, $330^{\circ}C$ had higher capacity and $Li_2O-P_2O_5-V_2O_5$ glass-ceramics had higher capacity than $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$ glass-ceramics.

  • PDF

Crystallization and charg-discharge properties of $Li_2O-P_2O_5-V_2O_5$-gless as Cathode material (정극재료로서 $Li_2O-P_2O_5-V_2O_5$ 유리의 결정화와 충방전 특성)

  • Son, Myeng-Mo;Lee, Heon-Su;Song, Hee-Woong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.157-159
    • /
    • 2000
  • Vanadate glass in the $Li_2O-P_2O_5-V_2O_5$ system with 60mol% $V_2O_5$ was prepared by melting the bath in pt. crucible followed by quenching on the copper plate. We found that $Li_2O-P_2O_5-V_2O_5$ glass ceramics obtained from nucleation of $Li_2O-P_2O_5-V_2O_5$ glass showed significantly higher capacity and longer cycle life than conventionally made crystalline $LiV_3O_8$. In the present paper, We describe the charge/discharge properties during crystallization process and find the best crystallization condition of $Li_2O-P_2O_5-V_2O_5$ glass as cathode material. The Charge and discharge capacity of $Li_2O-P_2O_5-V_2O_5$ glass was about 220mAh/g for the cell heat-treated at $250^{\circ}C$ for 2.5hr.

  • PDF

Crystallization and Electrochemical properties of $Li_{2}O=P_{2}O_{5}=V_{2}O_{5}$ Glasses ($Li_{2}O=P_{2}O_{5}=V_{2}O_{5}$ 유리의 결정화에 따른 전기 화학적 특성변화)

  • 손명모;이헌수;구할본;김상기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.523-527
    • /
    • 2000
  • Vanadate glasses in the Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ system containing 10mo1% glass former, P$_2$O$_{5}$ were prepared by melting the batch in pt. crucib1e followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics obtained from nucleation of glass showed significantly higher capacity and longer cycle life than conventionally made crystalline LiCoO$_2$, LiNiO$_2$and LiV$_3$O$_{8}$. In the present paper, We describe electro-chemical properties during crystallization process and find the best crystallization condition of Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ g1ass as cathod material. Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics shows superior rechargeable capacity of 220 mAh/g in the cycling between 2.0 and 3.9V.etween 2.0 and 3.9V.

  • PDF

Crystallization and Electrical Conductivity of $CuO-P_{2}O_{5}-V_{2}O_{5}$ Glass for Solid-state Electrolyte (고체전해질용 $CuO-P_{2}O_{5}-V_{2}O_{5}$유리의 결정화와 전기전도도)

  • 손명모;이헌수;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.1018-1021
    • /
    • 2001
  • 1018-1021 The CuO-P$_2$O$_{5}$ containing P$_2$O$_{5}$ as glass-former were prepared by press-quenching method on the copper plate. By post-heat treatment of these glasses, the CuO-P$_2$O$_{5}$ -V$_2$O$_{5}$ -g1ass ceramics was obtained and the crystallization behavior and dc conductivities were investigovted. The heat-treated glass-ceramics decreased in electrical conductivity by the order of 10$^1$ compared to amorphous glass. The linear relationship between In($\sigma$T) and T$^{-1}$ indicated that electrical conduction in CuO-P$_2$O$_{5}$ -V$_2$O$_{5}$ -gass occurred by a small polaron hopping.

  • PDF

Crystallization properties of $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ Glass for cathod material (정극 재료용 $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ 유리의 결정화 특성)

  • Son, Myung-Mo;Lee, Heon-Su;Gu, Hal-Bon;Jeong, In-Seong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.311-315
    • /
    • 2000
  • Vanadate glass in the $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ system containing 10mol% glass fonner, $P_2O_5$ and $Bi_2O_3$ was prepared by melting the batch in pt. crucible followed by Quenching on the copper plate. We found that $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ glass-ceramics obtained from nucleation of glass showed signifieantly higher capacity and longer cycle life than conventionally made crystalline $LiV_3O_{8}$. In the present paper, we describe the charge / discharge properties during crystallization process and find the best crystallization condition of $LiO_2-P_2O_5-Bi_2O_3-V_2O_5$ glass as cathod material.

  • PDF

Properties of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 물성)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.4
    • /
    • pp.289-298
    • /
    • 1993
  • Properties in terms of the variation of the glass compositions, which were density (p), molar volume(Vm), atom/ion packing density (Dp), refractive index (nD), transformation temperature (Tg), dilatometric softening point (Td), thermal expansion coefficient (α), Young's modulus (E), and knoop hardness (KHN) were investigated in CaO-SiO2 glasses and CaO-P2O5-SiO2 glasses containing less than 10mole% of P2O5. Those properties were measured by density measurement kit, Abbe refractometer, dilatometer, ultrasonic pulse echo equipment, and micro hardness tester. When CaO content was increased in CaO-SiO2 glasses, p, Dp, nD, Tg, Td, α, E and KHN were increased, while Vm was decreased. When P2O5 was added to the CaO-SiO2 glasses with constant CaO/SiO2 ratio as 1.07, p, Dp, nD, Tg, Td, α, E and KHN were decreased, while Vm was increased. When the amount of P2O5 in glasses was kept constant, the changes of the properties with variation of CaO content in the CaO-P2O5-SiO2 glasses were very similar to those of CaO-SiO2 glasses. These phenomena could be explained by the structural role of P2O5 in the CaO-P2O5-SiO2 glasses, which was polymerization of siicate structures and resulted in [PO4] monomer structure in glasses. Due to this structural characteristics, the bond strength and packing density were changed with compositions. Proportional relationships between 1) np and Dp, 2) Tg, Td, α and CaO content, 3) E and Vm-1, and 4) KHN and P2O5 content were evaluated in this investigation.

  • PDF

Electro-chemical properties of $Li_{2}O=P_{2}O_{5}-V_{2}O_{5}$ Glass-ceramics for Cathode Materials (정극재료용 $Li_{2}O=P_{2}O_{5}-V_{2}O_{5}$ 계 결정화 유리의 전기화학적 특성)

  • 손명모;이헌수;구할본;김윤선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.295-298
    • /
    • 2000
  • Vanadate glasses in the Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ system containing 10~20mo1% glass former, P$_2$O$_{5}$ were prepared by melting the batch in pt. crucible followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ g1ass-ceramics obtained from crystallization of glass showed significantly higher capacity and longer cycle life than Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ g1ass. In the present paper, we describe electro-chemical properties during crystallization process and find the best crystallization condition of Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ g1ass as cathod material. Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics shows superior rechargeable capacity of 220 mAh/g in the cycling between 2.0 and 3.9V. between 2.0 and 3.9V.

  • PDF

Electrochemical Properties of $Li_{2}O-P_{2}O_{5}-V_{2}O_{5}$ Glass-ceramics for cathode Material (정극재료용 $Li_{2}O-P_{2}O_{5}-V_{2}O_{5}$계 결정화 유리의 전기화학적 특성)

  • 손명모;이헌수;김종욱;김윤선;구할본
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.8
    • /
    • pp.652-657
    • /
    • 2001
  • Vanadate glasses containing 10~20mol% glass former, P$_2$O$_{5}$ were prepared by melting the batch in platinum crucible and quenching on the copper plate. Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics having LiV$_3$O$_{8}$ were obtained by heat-treatment of this glass in crystallization temperature. The glass-ceramics showed singnificantly good capacity and long cycles life according to heating condition. In this paper, we described electrochemical properties during crystallization process and found the best crystallizaton condition of Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass as cathode material. Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics heat-treated at 233$^{\circ}C$ for 3 hors showed good rechargeable capacity of 220mAh/g in the cycling range between 2.0 and 3.9V.en 2.0 and 3.9V.

  • PDF

Formation and Structure of $CaO-P_2O_5-SiO_2$ Glasses ($CaO-P_2O_5-SiO_2$계 유리의 형성 및 구조)

  • 조정식;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.729-738
    • /
    • 1992
  • The glass formation and structural change with the glass compositions were investigated in the CaO-P2O5-SiO2 system with less than 40 wt% of P2O5. The glass formation range was determined by XRD, SEM and EDS techniques for water quenched specimens. The structural analyses were made for binary CaO-SiO2 glasses and ternary CaO-P2O5-SiO2 glasses by using FT-IR and Raman spectroscopy. The glass formation was affected by CaO/SiO2 mole ratio, P2O5 content and primary crystalline phase. The stable glass formation range was found when the transformed CaO/SiO2 mole ratio (new factor derived from structural changes) was in the range of 0.72~1.15 with less than 10 mol% of P2O5. The structural analyses of CaO-SiO2 glasses indicated that as the CaO/SiO2 ratio was increased, the nonbridging oxygens in the structural unit of the glasses were increased. With addition of P2O5 to CaO-SiO2 glasses, the P2O5 enhanced the polymerization of [SiO4] tetrahedra unit in CaO-SiO2 glasses, which contained a large portion of nonbridging oxygen. The phosphate eliminated nonbridging oxygens from silicate species, forcing polymerization of silicate structures and produced in [PO4] monomer in glasses. When added P2O5 was kept constant, the structural change with various CaO/SiO2 ratio was very similar to that of CaO-SiO2 glasses.

  • PDF

Electrochemical properties and crystallization of $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ Glass ($Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ 유리의 결정화와 전기화학적 특성 변화)

  • Son, Muong-Mo;Lee, Heon-Soo;Gu, Hal-Bon;Kim, Yun-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.550-553
    • /
    • 2001
  • $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ glass containing glass former, $P_{2}O_{5}$ and $Bi_{2}O_{3}$ was prepard by melting the glass batch in pt. erucible followed by guenching on the copper plate. We found that $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ glass-ceramics obtained from the crystallization of glass showed signifieantly higher capacity and longer cycle life tham $LiV_{3}O_{8}$ made from powder synthesis. In this paper, we described crystallization process and $LiV_{3}O_{8}$ crystal growth in glass matrix by increasing temperature. The electrochemical properties were strongly affected by $LiV_{3}O_{8}$ crystal growth in matrix

  • PDF