• Title/Summary/Keyword: $PPAR_{\gamma}$

Search Result 471, Processing Time 0.029 seconds

Peroxisome Proliferator-Activated Receptor-Gamma Pro12Ala Polymorphism Could be a Risk Factor for Gastric Cancer

  • Zhao, Jing;Zhi, Zheng;Song, Guangyao;Wang, Juan;Wang, Chao;Ma, Huijuan;Yu, Xian;Sui, Aixia;Zhang, Hongtao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2333-2340
    • /
    • 2015
  • Background: Due to the strong inhibitory effects of $PPAR{\gamma}$ gene on the growth of cancer cells, the role of Pro12Ala polymorphism in $PPAR{\gamma}$ gene has been extensively investigated in cancer recently. However, the results were inconsistent according to cancer type. The aim of this study was to comprehensively evaluate the $PPAR{\gamma}$ Pro12Ala polymorphism and gastric cancer susceptibility. Materials and Methods: Search strategies were conducted in Pubmed, Medline (Ovid), Chinese biomedical database (CBM), China national knowledge infrastructure (CNKI), VIP, and Wanfang database, covering all publications, with the last search up to November 01, 2014. The strength of association between $PPAR{\gamma}$ Pro12Ala polymorphism and gastric cancer risk was assessed by OR with 95%CI. Results: A total of 546 cases and 827 controls in 5 case-control studies were included in this meta-analysis. The results indicated that the variant G allele carriers (CG+GG) had a 2.31 times higher risk for gastric cancer when compared with the homozygote CC (odds ratio (OR)=2.31, 95% confidence interval (CI)=1.67-3.21 for CG+GG vs. CC). In the subgroup analysis by ethnicity, significantly elevated risks were both found in Asians (OR=2.56, 95% CI=1.42-4.64) and Caucasians (OR=2.20, 95% CI=1.48-3.25). Similarly, in the subgroup analysis by H. pylori status, a significantly increased risk was identified in H. pylori (+) populations (OR=3.68, 95%CI=2.07-6.52), but not in H. pylori(-) populations (OR=1.17, 95%CI=0.58-2.39). Conclusions: This pooled analysis suggested that the $PPAR{\gamma}$ Pro12Ala polymorphism could be an independent predictive risk factor for gastric cancer especially in H. pylori infected populations in Asians and Caucasians. Nevertheless, prospectively designed cohort studies are needed to further investigate gene-gene and gene-environment interactions to confirm the combined effects of $PPAR{\gamma}$ Pro12Ala polymorphisms and H. pylori infection on gastric cancer risk.

Role of ERK (Extracellular Signal Regulated Kinas) and PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) on TGF-β1 Induced Human Endometrial Stromal Cell Decidualization (TGF-β1에 의하여 유도된 인간자궁내막의 탈락막화(Decidualization)에 있어서 ERK (Extracellular Signal Regulated Kinas)와 PPARγ (Peroxisome Proliferator-Activated Receptor Gamma)의 역할)

  • Chang, Hye Jin;Lee, Jae Hoon;Kim, Mi Ran;Hwang, Kyung Joo;Park, Dong Wook;Min, Churl K.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.33 no.2
    • /
    • pp.105-113
    • /
    • 2006
  • Objective: To investigate the role of ERK and $PPAR{\gamma}$ on the $TGF-{\beta}1$ induced human endometrial stromal cell decidualization in vitro. Method: Endometrial stromal cells are cultured under the following condition: DMEM/F12 (10% FBS, 1 nM E2 and 100 nM P4). $TGF-{\beta}1$ (5 ng/ml), Rosiglitazone (50 nM), and PD98059 ($20{\mu}M$) were added according to experimental purposes. Trypan-Blue and hematocytometer were utilized to count cell number. Enzyme-linked immunosorbent assay (ELISA) and western blotting were utilized to detect proteins. Result: $TGF-{\beta}1$ inhibited proliferation of cultured human endometrial stromal cells and induced expression of PGE2 and prolactin. This effect was mediated by Smad and ERK activation. Administration of rosiglitazone, $PPAR{\gamma}$ agonist, prevented $TGF-{\beta}1$ effect on cell proliferation. Furthermore, Rosiglitazone inhibited $TGF-{\beta}1$ induced activation of ERK, consequently reduced PGE2 and prolactin production. Conclusion: $TGF-{\beta}1$ induced decidualization of endometrial stromal cell through Smad and ERK phosphorylation. $PPAR{\gamma}$ acts as a negative regulator of human ndometrial cell decidualization in vitro.

Synthesis and Biological Activity of [[(Heterocycloamino)alkoxy] benzyl]-2,4-thiazolidinediones as $PPAR_\gamma$ Agonists

  • Jeon Raok;Kim Yoon-Jung;Cheon Ye-Jin;Ryu Jae-Ha
    • Archives of Pharmacal Research
    • /
    • v.29 no.5
    • /
    • pp.394-399
    • /
    • 2006
  • Benzothiazole derivatives of thiazolidinediones (TZD) were synthesized using a modified Mitsunobu reaction of 2-(benzothiazol-2-ylmethylamino)ethanol (2) with 5-(4-hydroxybenzyl)-3-triphenylmethylthiazolidine-2,4-dione and assayed for activity on peroxisome proliferator-activated receptor (PPAR) subtypes and inhibitory activity of NO production in lipopolysaccharide-activated macrophages. Most of the tested compounds were identified as potent $PPAR_\gamma$ agonists, indicating their potential as drug candidates for diabetes.

Peroxisome Proliferator-activated Receptor-γ Gene Polymorphisms are not associated with Osteonecrosis of the Femoral Head in the Korean Population

  • Kim, Tae-Ho;Hong, Jung Min;Park, Eui Kyun;Kim, Shin-Yoon
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.388-393
    • /
    • 2007
  • Osteonecrosis of the femoral head (ONFH) is a multifactorial disease to which certain individuals are more at risk. Altered lipid metabolism is one of the major risk factors for osteonecrosis, especially corticosteroid therapy and alcoholism. Peroxisome Proliferator-Activated Receptor-${\gamma}$ ($PPAR{\gamma}$) plays a crucial role in differentiation of mesenchymal cells to adipocytes, lipid homeostasis, and bone metabolism. To investigate the possible association between $PPAR{\gamma}$ gene variants and susceptibility to ONFH, we genotyped three common polymorphisms (-796A > G, +34C > G[Pro12Ala], and +82466C > T[His477His]) in 448 ONFH patients and 336 control subjects. Genotypes, allele frequencies, and haplotypes of the polymorphisms in the complete set of patients as well as in subgroups by sex or etiology were not significantly different from those in the control group. This suggests that the examined polymorphisms and haplotypes of the $PPAR{\gamma}$ gene are unlikely to be associated with susceptibility to ONFH.

Design and Synthesis of Oxime Ethers of β-Oxo-γ-phenylbutanoic Acids as PPAR α and -γ Dual Agonists

  • Han, Hee-Oon;Koh, Jong-Sung;Kim, Seung-Hae;Park, Ok-Ku;Kim, Kyoung-Hee;Jeon, Sang-Kweon;Hur, Gwong-Cheung;Yim, Hyeon-Joo;Kim, Geun-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.1979-1982
    • /
    • 2012
  • Oxime ethers of ${\beta}$-oxo-${\gamma}$-phenylbutanoic acids were prepared to develop more effective PPAR ${\alpha}$ and ${\gamma}$ dual agonists. Among them, compound 11k exhibited potent $in$ $vitro$ activities with $EC_{50}$ of 2.5 nM and 3.3 nM in PPAR ${\alpha}$ and ${\gamma}$, respectively. It showed better glucose lowering effects than rosiglitazone 1 and improved the lipid profile like plasma triglyceride in db/db mice model.

Association between Pax8-PPARγ1 Rearrangement and Follicular Thyroid Cancer: a Meta-Analysis

  • Li, Hang-Yu;Xie, Zhi-Hao;Xu, Cong-Hui;Pu, Mei-Ling;Chen, Zi-Yan;Yu, Miao;Wang, Heng-Shu;Zhou, Chen-Ming;Pu, Chao-Yu;Liu, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4247-4250
    • /
    • 2016
  • Background: Pax8 and peroxisome proliferator-activated receptor gamma 1 gene (Pax8-$PPAR{\gamma}1$) are important factors in tumors. Several studies have suggested that follicular thyroid cancer may arise from Pax8- $PPAR{\gamma}1$ rearrangement. In order to have a better understanding of the association between Pax8-$PPAR{\gamma}1$ rearrangement and follicular thyroid cancer, we conducted the presenmt meta-analysis. Materials and Methods: The information was extracted from PubMed, EMBASE and Web of Science. Statistic analysis was performed with Stata12.0 software. Odds ratios (ORs) were calculated using a fixed-effects model. We also performed heterogeneity and publication bias analyses. Results: Nine studies including 198 follicular thyroid cancer patients and 268 controls were considered eligible. The frequency of Pax8-$PPAR{\gamma}1$ rearrangement was significantly higher in the follicular thyroid cancer group than in the control group, with a pooled OR of 6.63 (95%CI=3.50-12.7). In addition, through subgroup analysis, the OR between Pax8-$PPAR{\gamma}1$ rearrangement and follicular thyroid cancer was 6.04 (95%CI = 3.18-11.5) when using benign tumor tissues as controls. The OR for the method subgroup was 9.99 (95% CI =4.86-20.5) in the RT-PCR. Conclusions: The final results demonstrated that Pax8-$PPAR{\gamma}1$ rearrangement has significant association with follicular thyroid cancer.

Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-${\gamma}$ in mice fed a high-fat diet

  • Park, Ji-Heon;Lee, Sun-Hee;Chung, Ill-Min;Park, Yong-Soon
    • Nutrition Research and Practice
    • /
    • v.6 no.4
    • /
    • pp.322-327
    • /
    • 2012
  • This study investigated the hypothesis that a sorghum extract exerts anti-diabetic effects through a mechanism that improves insulin sensitivity via peroxisome proliferator-activated receptor gamma (PPAR-${\gamma}$) from adipose tissue. Seven C57BL/6 mice were fed an AIN-93M diet with fat consisting of 10% of total energy intake (LF) for 14 weeks, and 21 mice were fed a high-fat AIN diet with 60% of calories derived from fat (HF). From week 8, the HF diet-fed mice were orally administered either saline (HF group), 0.5% (0.5% SE group), or 1% sorghum extract (1% SE group) for 6 weeks (n = 7/group). Perirenal fat content was significantly lower in the 0.5% SE and 1% SE groups than that in the HF mice. Levels of total and low-density lipoprotein cholesterol, triglycerides, glucose, and the area under the curve for glucose were significantly lower in mice administered 0.5% SE and 1% SE than those in HF mice. Serum insulin level was significantly lower in mice administered 1% SE than that in HF mice or those given 0.5% SE. PPAR-${\gamma}$ expression was significantly higher, whereas the expression of tumor necrosis factor-${\alpha}$ was significantly lower in mice given 1% SE compared to those in the HF mice. Adiponectin expression was also significantly higher in mice given 0.5% SE and 1% SE than that in the HF mice. These results suggest that the hypoglycemic effect of SE may be related with the regulation of PPAR-${\gamma}$-mediated metabolism in this mouse model.

$PPAR{\gamma}$ Inhibits Inflammation through the Suppression of ERK1/2 Kinase Activity in Human Gingival Fibroblasts

  • Lee, Young-Hee;Kwak, Dong-Hoon;Kang, Min-Soo;Bhattarai, Govinda;Lee, Nan-Hee;Jhee, Eun-Chung;Yi, Ho-Keun
    • International Journal of Oral Biology
    • /
    • v.35 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Periodontal disease is a major oral disorder and comprises a group of infections that lead to inflammation of the gingiva and the destruction of periodontal tissues. $PPAR{\gamma}$ plays an important role in the regulation of several metabolic pathways and has recently been implicated in inflammatory response pathways. However, its effects on periodontal inflammation have yet to be clarified. In our current study, we evaluated the anti-inflammatory effects of $PPAR{\gamma}$ on periodontal disease. Human gingival fibroblasts (HGFs) treated with lipopolysaccharide (LPS) showed high levels of intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), matrix metalloproteinase-2 (MMP-2), and -9 (MMP-9). Moreover, these cells also showed upregulated activities for extracellular signal regulated kinase (ERK1/2), inducible nitric oxide synthase (iNOS) and cyclooxygnase-2. However, cells treated with Ad/$PPAR{\gamma}$ and rosiglitazone in same culture system showed reduced ICAM-1, VCAM-1, MMP-2, -9 and COX-2. Finally, the anti-inflammatory effects of $PPAR{\gamma}$ appear to be mediated via the suppression of the ERK1/2 pathway and consequent inhibition of NF-kB translocation. Our present findings thus suggest that $PPAR{\gamma}$ indeed has a pivotal role in gingival inflammation and may be a putative molecular target for future therapeutic strategies to control chronic periodontal disease.

Allium Hookeri Extract Enhances Glucose Uptake through GLUT4 Up-regulation in 3T3-L1 Cells (GLUT4 상향조절을 통한 Allium hookeri 추출물의 3T3-L1 세포 내 포도당 흡수 증진 효과)

  • Kang, Young Eun;Choi, Kyeong-Mi;Park, Eunjin;Jung, Won-Beom;Jeong, Heejin;Yoo, Hwan-Soo
    • Journal of Life Science
    • /
    • v.27 no.3
    • /
    • pp.289-294
    • /
    • 2017
  • Diabetes mellitus is associated with insulin resistance, which leads to down-regulation of insulin signaling and the decreased glucose uptake. Adipocytes are sensitive to insulin, and closely implicated in insulin resistance and diabetes. Insulin stimulates differentiation of preadipocytes to adipocytes, and increases glucose transport. Allium species have been used as traditional medicine and health-promoting foods. Allium hookeri (A. hookeri) is reported to improve the pancreatic ${\beta}-cell$ damage and exhibit pancreatic anti-inflammatory activity in streptozotocin-induced diabetic rats. We investigated whether A. hookeri extract (AHE) may stimulate glucose uptake in adipocytes through increasing insulin sensitivity. AHE enhanced fat accumulation, a differentiation biomarker, under the partial induction of differentiation by insulin. $PPAR{\gamma}$, a transcription factor highly expressed in adipocytes, promotes adipocyte differentiation and insulin sensitivity. AHE increased the differentiation of preadipocytes through up-regulation of $PPAR{\gamma}$. The activation of $PPAR{\gamma}$ increases the GLUT4 expression during adipocyte differentiation. GLUT4 is responsible for glucose uptake into the adipocytes. AHE increased the expression of GLUT4 in adipocytes, and subsequently enhanced the insulin-stimulated glucose uptake. These results suggest that AHE promotes adipocyte differentiation through activation of $PPAR{\gamma}$, and leads to enhance glucose uptake in adipocytes along with GLUT4 up-regulation. Thus, AHE may be effective for the insulin-sensitizing and anti-diabetic activities.