• Title/Summary/Keyword: $PM_{2.5}$ fine particles

Search Result 195, Processing Time 0.028 seconds

Effects of Fine Particles on Pulmonary Function of Elementary School Children in Ulsan (미세먼지가 울산지역 초등학생의 폐기능에 미치는 영향)

  • Yu, Seung-Do;Cha, Jung-Hoon;Kim, Dae-Seon;Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.5
    • /
    • pp.365-371
    • /
    • 2007
  • To evaluate the effect of air pollution on respiratory health in children, We conducted a longitudinal study in which children were asked to record their daily levels of Peak Expiratory Flow Rate(PEFR) using potable peak flow meter(mini-Wright) for 4 weeks. The relationship between daily PEFR and ambient air particle levels was analyzed using a mixed linear regression models including gender, age in year, weight, the presence of respiratory symptoms, and relative humidity as an extraneous variable. The daily mean concentrations of $PM_{10}$ and $PM_{2.5}$ over the study period were $64.9{\mu}g/m^3$ and $46.1{\mu}g/m^3$, respectively. The range of daily measured PEFR in this study was $182{\sim}481\;l/min$. Daily mean PEFR was regressed with the 24-hour average $PM_{10}(or\;PM_{2.5})$ levels, weather information such as air temperature and relative humidity, and individual characteristics including sex, weight, and respiratory symptoms. The analysis showed that the increase of air particle concentrations was negatively associated with the variability in PEFR. We estimated that the IQR increment of $PM_{10}$ or $PM_{2.5}$ were associated with 1.5 l/min (95% Confidence intervals -3.1, 0.1) and 0.8 l/min(95% CI -1.8, 0.1) decline in PEFR. Even though this study showed negative findings on the relationship between respiratory function and air particles, it was worth noting that the findings must be interpreted cautiously because exposure measurement based on monitoring of ambient air likely resulted in misclassification of true exposure levels and this was the first Korean study that $PM_{2.5}$ measurement was applied as an index of air quality.

Field tests of indoor air cleaners for removal of PM2.5 and PM10 in elementary school's classrooms in Seoul, Korea (서울 초등학교 교실의 PM2.5 및 PM10 제거를 위한 학교용 공기청정기 실증)

  • Han, Bangwoo;Hong, Keejung;Shin, Dongho;Kim, Hakjoon;Kim, Yongjin;Kim, Sangbok;Kim, Sangwoo;Hwang, Cheongha;Noh, Kwangchul
    • Particle and aerosol research
    • /
    • v.15 no.2
    • /
    • pp.79-90
    • /
    • 2019
  • It is important to control fine particles in children care centers, elementary schools, elderly care facilities and so on where vulnerable children and the aged stay during most of their time. This study has investigated $PM_{2.5}$ and $PM_{10}$ concentrations in two classrooms equipped with an air cleaner and two air cleaners, respectively and they were compared to those in a classroom without an air cleaner as well as those outdoors. Eight air cleaners which have various clean air delivery rates (CADRs) between 9.9 and $21.3m^3/min$ were tested in classrooms in two elementary schools in Seoul. Average $PM_{2.5}$ and $PM_{10}$ were $7.3{\pm}0.7$ and $45.5{\pm}4.1{\mu}g/m^3$ in classrooms equipped with an air cleaner and $4.2{\pm}0.6$ and $24.6{\pm}2.5{\mu}g/m^3$ in classrooms with two air cleaners, whereas they were $22.1{\pm}2.6$ and $109.1{\pm}9.6{\mu}g/m^3$ in classrooms without an air cleaner and $36.9{\pm}5.1$ and $74.1{\pm}10.6{\mu}g/m^3$ outdoors, respectively. $PM_{2.5}$ in classrooms could be reduced effectively by using an air cleaner or two air cleaners, because $PM_{2.5}$ was mainly infiltrated from outdoors, however $PM_{10}$ could not because $PM_{10}$ was mainly caused indoors by students' activities. Air cleaners were more effective for removal of $PM_{2.5}$ and $PM_{10}$ in classrooms with a high airtightness than those in classrooms with a relatively low one. Average $CO_2$ in classrooms was about 1500 to 2000 ppm for class hours dependent on the student number per a classroom, which was about 1.5 to 2 times higher than the standard, regardless of the use of air cleaner.

Thermal and Hygroscopic Properties of Indoor Particulate Matter Collected on an Underground Subway Platform

  • Ma, Chang-Jin;Lee, Kyoung-Bin;Zhang, Daizhou;Yamamoto, Mariko;Kim, Shin-Do
    • Asian Journal of Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.228-235
    • /
    • 2015
  • In order to clarify the thermal and hygroscopic properties of indoor particulate matter (PM) in a semiclosed subway space, which is critically important for understanding of the distinctive particle formation processes as well as the assessment of their health effects, the size-resolved PMs (i.e., $PM_{2.5}$ and $PM_{10-2.5}$) were intensively collected on the platform of Miasageori station on the Seoul Subway Line-4. The elemental concentrations in soluble and insoluble fractions were determined by PIXE from the bulkily pretreated $PM_{2.5}$. The thermal and hygroscopic characteristics of individual particles were investigated via a combination of the unique pretreatment techniques (i.e., the high-temperature rapid thermal process and the water dialysis) and SEM-EDX analysis. Iron and calcium were unequaled in insoluble and soluble $PM_{2.5}$ fractions, respectively, with overwhelming concentration. The SEM-EDX's elemental net-counts for the pre- and post-pyrolyzed PMs newly suggest that magnesium and several elements (i.e., silica, aluminum, and calcium) may be readily involved in the newly generated subway fine PM by a high-temperature thermal processing when trains are breaking and starting. Through the water dialysis technique, it turned out that calcium has meaningful amount of water soluble fraction. Furthermore, the concentrations of the counter-ions associated with the calcium in subway $PM_{10-2.5}$ were theoretically estimated.

Physical, Chemical and Optical Properties of Fine Aerosol as a Function of Relative Humidity at Gosan, Korea during ABC-EAREX 2005

  • Moon, Kwang-Joo;Han, Jin-Seok;Cho, Seog-Yeon
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.3
    • /
    • pp.129-138
    • /
    • 2013
  • The water uptake by fine aerosol in the atmosphere has been investigated at Gosan, Korea during ABC-EAREX 2005. The concentration of inorganic ion and carbon components, size distribution, and light scattering coefficients in normal and dry conditions were simultaneously measured for $PM_{2.5}$ by using a parallel integrated monitoring system. The result of this study shows that ambient fine particles collected at Gosan were dominated by water-soluble ionic species (35%) and carbonaceous materials (18%). In addition, it shows the large growth of aerosol in the droplet mode when RH is higher than 70%. Size distribution of the particulate surface area in a wider size range ($0.07-17{\mu}m$) shows that the elevation of RH make ambient aerosol grow to be the droplet mode one around $0.6{\mu}m$ or the coarse mode one, larger than $2.5{\mu}m$. Hygroscopic factor data calculated from the ratio of aerosol scattering coefficients at a given ambient RH and a reference RH (25%) show that water uptake began at the intermediate RH range, from 40% to 60%, with the average hygroscopic factor of 1.10 for 40% RH, 1.11 for 50% RH, and 1.17 for 60% RH, respectively. Finally, average chemical composition and the corresponding growth curves were analyzed in order to investigate the relationship between carbonaceous material fraction and hygroscopicity. As a result, the aerosol growth curve shows that inorganic salts such as sulphate and nitrate as well as carbonaceous materials including OC largely contribute to the aerosol water uptake.

Shipboard Measurements of Air Pollutants across the Yellow Sea (황해 직선 항로상 대기오염물질의 측정)

  • 이승복;배귀남;진현철;김영성;문길주;심상규
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.1
    • /
    • pp.33-46
    • /
    • 2004
  • Air pollutants were measured eight times from June 1999 to June 2002 on regular ferries cruising across the Yellow Sea between Incheon in Korea and Qingdao or Tianjin in China. PM$_{10}$ and PM$_{2.5}$ were measured as particulate matters and SO$_2$, CO, and NO$_{x}$ were measured as gaseous pollutants. On each route, sampling was made, starting two hour after departure and ending two hour before arrival. Low concentrations of gaseous pollutants that were not much varied according to sampling period and location revealed that atmosphere over the sea was not directly affected by anthropogenic emissions. However, concentrations of fine particles were generally higher than those measured at Deokjeok Island, 50km west of the western seashore, at similar periods. It was believed that considerable influence of China in the form of secondary pollutants was exerted over the sea.a.a.a.

Study on Characteristics of PM2.5 and Its Ionic Constituents in Chuncheon, Korea (춘천시 PM2.5의 질량농도 및 이온성분 농도의 특성에 관한 연구)

  • Jung, Jin-Hee;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.682-692
    • /
    • 2008
  • Fine particles ($PM_{2.5}$) were collected and analyzed from November 2005 through August 2007 in Chuncheon, Korea to investigate the characteristics of $PM_{2.5}$ and its ionic constituents. The average $PM_{2.5}$ concentration during the study period was $39{\mu}g/m^3$, which is almost two times higher than the annual US NAAQS $PM_{2.5}$ standard of $15{\mu}g/m^3$. $PM_{2.5}$ concentrations were higher in spring and winter than in summer and fall. During spring, Asian Dust events dramatically enhanced $PM_{2.5}$ concentrations, and long-range transport of $PM_{2.5}$ emitted in industrial area of China often occurred during winter based on trajectory analysis. Contribution of $PM_{2.5}$ to $PM_{10}$ concentrations ranged from $72{\mu}g/m^3$ during Asian Dust events to $457{\mu}g/m^3$, indicating that a large portion of $PM_{2.5{\sim}10}$ was transported from China during Asian Dust events. Among the major ionic constituents ${SO_4}^{2-}$ showed the highest concentration, followed by ${NH_4}^+$, ${NO_3}^-$ and ${NO_2}^-$. Chuncheon appeared to be ${NH_4}^+$ rich environment, indicating that $(NH_4)_{2}SO_4$ and ${NH_4}{NO_3}$ were the predominant forms of ${NO_3}^-$ and ${SO_4}^2$ in $PM_{2.5}$. Haze has frequently occurred in Chuncheon since So-Yang dam was constructed in 1973. Haze events were observed on 23 days during sampling period, and the average $PM_{2.5}$ concentration was approximately 1.6 times higher during haze events than during non-haze events. This result suggests that haze enhances the secondary aerosol formation because the aerosol spontaneously absorbs water to form a saturated salt solution, deriving a significant increase in the mass of the particle.

Chemical Composition of Fine Particulate Matter in the Downtown Area of Jeju City (제주시 도심지역 미세먼지의 화학적 조성 특성)

  • Hu, Chul-Goo;Lee, Ki-Ho
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.597-610
    • /
    • 2018
  • This study observed particulate matter ($PM_{2.5}$ and $PM_{10}$) in the downtown area of Jeju City, South Korea, to understand the chemical composition of particulates based on an analysis of the water-soluble ionic species contained in the particles. The mass fraction of the ionic species in the sampled $PM_{10}$ and $PM_{2.5}$ was 44.3% and 42.2%, respectively. In contrast, in Daegu City and Suwon City, the mass fraction of the ionic species in $PM_{2.5}$ was higher than that in $PM_{10}$. The chloride depletion percentage of $PM_{10}$ and $PM_{2.5}$ in Jeju City was higher than 61% and 66%, respectively. The contribution of sea-salt to the mass of $PM_{10}$ (5.9%) and $PM_{2.5}$ (2.6%) in Jeju City was similar to that in several coastal regions of South Korea. The mass ratio of $Cl^-$ to $Na^+$ in the downtown area of Jeju City was comparable to that in some coastal regions, such as the Gosan Area of Jeju Island, Deokjeok Island, and Taean City. The mass fraction of sea-salt in $PM_{10}$ and $PM_{2.5}$ was very low, and the concentration of sodium and chloride ions in $PM_{10}$ was not correlated with those in $PM_{2.5}$ ($R^2$ < 0.2), suggesting that the effects of sea-salt on the formation of particulate matter in Jeju City might be insignificant. The relationship between $NH_4{^+}$ and several anions such as $SO_4{^{2-}}$, $NO_3{^-}$, and $Cl^-$, as well as the relationship between the measurement and calculation of ammonium ion concentration, suggested that sea-salts may not react with $H_2SO_4$, and $(NH_4)_2SO_4$ may be a major secondary inorganic aerosol component of $PM_{2.5}$ and $PM_{10}$ in Jeju City.

Characterization of Concentrations of Fine Particulate Matter in the Atmosphere of Pohang Area (포항지역 대기 중 초미세먼지(PM$_{2.5}$)의 오염특성평가)

  • Baek, Sung-Ok;Heo, Yoon-Kyeung;Park, Young-Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.3
    • /
    • pp.302-313
    • /
    • 2008
  • The purposes of this study are to investigate the concentration levels of fine particles, so called PM$_{2.5}$, to identify the affecting sources, and to estimate quantitatively the source contributions of PM$_{2.5}$. Ambient air sampling was seasonally carried out at two sites in Pohang(a residential and an industrial area) during the period of March to December 2003. PM$_{2.5}$ samples were collected by high volume air samplers with a PM$_{10}$ Inlet and an impactor for particle size segregation, and then determined by gravimetric method. The chemical species associated with PM$_{2.5}$ were analyzed by inductively coupled plasma spectrophotometery(ICP) and ion chromatography(IC). The results showed that the most significant season for PM$_{2.5}$ mass concentrations appeared to be spring, followed by winter, fall, and summer. The annual mean concentrations of PM$_{2.5}$ were 36.6 $\mu$g/m$^3$ in the industrial and 30.6 $\mu$g/m$^3$ in the residential area, respectively. The major components associated with PM$_{2.5}$ were the secondary aerosols such as nitrates and sulfates, which were respectively 4.2 and 8.6 $\mu$g/m$^3$ in the industrial area and 3.7 and 6.9 $\mu$g/m$^3$ in the residential area. The concentrations of chemical component in relation to natural emission sources such as Al, Ca, Mg, K were generally higher at both sampling sites than other sources. However, the concentrations of Fe, Mn, Cr in the industrial area were higher than those in the residential area. Based on the principal component analysis and stepwise multiple linear regression analysis for both areas, it was found that soil/road dust and secondary aerosols are the most significant factors affecting the variations of PM$_{2.5}$ in the ambient air of Pohang. The source apportionments of PM$_{2.5}$ were conducted by chemical mass balance(CMB) modeling. The contributions of PM$_{2.5}$ emission sources were estimated using the CMB8.0 receptor model, resulting that soil/road dust was the major contributor to PM$_{2.5}$, followed by secondary aerosols, vehicle emissions, marine aerosols, metallurgy industry. Finally, the application and its limitations of chemical mass balance modeling for PM$_{2.5}$ was discussed.

CFD Simulations of the Trees' Effects on the Reduction of Fine Particles (PM2.5): Targeted at the Gammandong Area in Busan (수목의 초미세먼지(PM2.5) 저감 효과에 대한 CFD 수치 모의: 부산 감만동 지역을 대상으로)

  • Han, Sangcheol;Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.851-861
    • /
    • 2022
  • In this study, we analyzed the effects of trees planted in urban areas on PM2.5 reduction using a computational fluid dynamics (CFD) model. For realistic numerical simulations, the meteorological components(e.g., wind velocity components and air temperatures) predicted by the local data assimilation and prediction system (LDAPS), an operational model of the Korea Meteorological Administration, were used as the initial and boundary conditions of the CFD model. The CFD model was validated against, the PM2.5 concentrations measured by the sensor networks. To investigate the effects of trees on the PM2.5 reduction, we conducted the numerical simulations for three configurations of the buildings and trees: i) no tree (NT), ii) trees with only drag effect (TD), and iii) trees with the drag and dry-deposition effects (DD). The results showed that the trees in the target area significantly reduced the PM2.5 concentrations via the dry-deposition process. The PM2.5 concentration averaged over the domain in DD was reduced by 5.7 ㎍ m-3 compared to that in TD.

Characterization of fine particulate matter during summer at an urban site in Gwangju using chemical, optical, and spectroscopic methods (화학적·광학적·분광학적 방법을 이용한 광주 도심지역 여름철 초미세먼지의 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.91-106
    • /
    • 2021
  • Daily PM2.5 was collected during summer period in 2020 in Gwangju to investigate its chemical and light absorption properties. In addition, real-time light absorption coefficients were observed using a dual-spot 7-wavelength aethalometer. During the study period, SO42- was the most important contributor to PM2.5, accounting for on average 33% (10-64%) of PM2.5. The chemical form of SO42- was appeared to be combination of 70% (NH4)2SO4 and 30% NH4HSO4. Concentration-weighted trajectory (CWT) analysis indicated that SO42- particles were dominated by local pollution, rather than regional transport from China. A combination of aethalometer-based and water-extracted brown carbon (BrC) absorption indicated that light absorption of BrC due to aerosol particles was 1.6 times higher than that due to water-soluble BrC, but the opposite result was found in absorption Ångström exponent (AAE) values. Lower AAE value by aerosol BrC particles was due to the light absorption of aerosol BrC by both water-soluble and insoluble organic aerosols. The BrC light absorption was also influenced by both primary sources (e.g., traffic and biomass burning emissions) and secondary organic aerosol formation. Finally the ATR-FTIR analysis confirmed the presence of NH4+, C-H groups, SO42-, and HSO42-. The presence of HSO42- supports the result of the estimated composition ratio of inorganic sulfate ((NH4)2SO4) and bisulfate (NH4HSO4).