• Title/Summary/Keyword: $PM_{10}$ Forecasting

Search Result 87, Processing Time 0.024 seconds

Forecasting of Various Air Pollutant Parameters in Bangalore Using Naïve Bayesian

  • Shivkumar M;Sudhindra K R;Pranesha T S;Chate D M;Beig G
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.196-200
    • /
    • 2024
  • Weather forecasting is considered to be of utmost important among various important sectors such as flood management and hydro-electricity generation. Although there are various numerical methods for weather forecasting but majority of them are reported to be Mechanistic computationally demanding due to their complexities. Therefore, it is necessary to develop and build models for accurately predicting the weather conditions which are faster as well as efficient in comparison to the prevalent meteorological models. The study has been undertaken to forecast various atmospheric parameters in the city of Bangalore using Naïve Bayes algorithms. The individual parameters analyzed in the study consisted of wind speed (WS), wind direction (WD), relative humidity (RH), solar radiation (SR), black carbon (BC), radiative forcing (RF), air temperature (AT), bar pressure (BP), PM10 and PM2.5 of the Bangalore city collected from Air Quality Monitoring Station for a period of 5 years from January 2015 to May 2019. The study concluded that Naive Bayes is an easy and efficient classifier that is centered on Bayes theorem, is quite efficient in forecasting the various air pollution parameters of the city of Bangalore.

Students' Actual Use and Satisfaction of Meteorological Information and Demands on Health Forecasting at a University (일 대학 학생들의 기상정보 이용실태와 만족도 및 건강정보 요구도)

  • Oh, Jin-A;Park, Jong-Kil
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.15 no.2
    • /
    • pp.251-259
    • /
    • 2009
  • Purpose: Climate change affects human health and calls for a health forecasting service. The purpose of this study was to explore the students' actual use and their satisfaction with meteorological information and the demands on health forecasting at a university in South Kyungsang Province. Method: This study used a descriptive design through structured self-report questionnaires including frequency, contents, purpose, perception, satisfaction of meterological information and need and demand of health forecasting. Data were collected from June 1 to 5, 2009 and analyzed using the SPSS 17.0 program. Descriptive statistics, t-test, ANOVA, $\chi^2$ test and Person's correlation coefficient were used to analyze the data. Result: The majority of the students watched the daily weather information to decide about daily work, outdoor activity or habitually. The mean score of need for health forecasting was $3.44{\pm}.81$, and the demand for health forecasting was $2.93{\pm}1.05$. Significant differences were found in the need for health forecasting according to sex, major, and environmental disease. In addition, the higher the satisfaction of health forecasting, the higher the demand for it. Conclusion: I suggest improving the meteorological information system technically and developing a health forecasting service resulting in a healthier and more comfortable life.

The Effect of Dust Emissions on PM10 Concentration in East Asia (황사 배출량이 동아시아 지역 PM10 농도에 미치는 영향)

  • Choi, Dae-Ryun;Koo, Youn-Seo;Jo, Jin-Sik;Jang, Young-Kee;Lee, Jae-Bum;Park, Hyun-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.32-45
    • /
    • 2016
  • The anthropogenic aerosols originated from the pollutant emissions in the eastern part of China and dust emitted in northwestern China in Yellow sand regions are subsequently transported via eastward wind to the Korean peninsula and then these aerosols induce high $PM_{10}$ concentrations in Korean peninsula. In order to estimate air quality considering anthropogenic and dust emissions, Comprehensive Air-quality Model with extension (CAMx) was applied to simulate $PM_{10}$ concentration. The predicted $PM_{10}$ concentrations without/with dust emissions were compared with observations at ambient air quality monitoring sites in China and Korea for 2008. The predicted $PM_{10}$ concentrations with dust emissions could depict the variation of measured $PM_{10}$ especially during Yellow sand events in Korea. The comparisons also showed that predicted $PM_{10}$ concentrations without dust emissions were under-predicted while predictions of $PM_{10}$ concentrations with dust emission were in good agreement with observations. This implied that dust emissions from desert and barren soil in southern Mongolia and northern China minimized the discrepancies in the $PM_{10}$ predictions in East Asia. The effect of dust emission on annual $PM_{10}$ concentrations in Korea Peninsula for year 2008 was $5{\sim}10{\mu}g/m^3$, which were about 20% of observed annual $PM_{10}$ concentrations.

Analysis of Input Factors of DNN Forecasting Model Using Layer-wise Relevance Propagation of Neural Network (신경망의 계층 연관성 전파를 이용한 DNN 예보모델의 입력인자 분석)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1122-1137
    • /
    • 2021
  • PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.

Inverse Model Parameter Estimation Based on Sensitivity Analysis for Improvement of PM10 Forecasting (PM10 예보 향상을 위한 민감도 분석에 의한 역모델 파라메터 추정)

  • Yu, Suk Hyun;Koo, Youn Seo;Kwon, Hee Yong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.886-894
    • /
    • 2015
  • In this paper, we conduct sensitivity analysis of parameters used for inverse modeling in order to estimate the PM10 emissions from the 16 areas in East Asia accurately. Parameters used in sensitivity analysis are R, the observational error covariance matrix, and B, a priori (background) error covariance matrix. In previous studies, it was used with the predetermined parameter empirically. Such a method, however, has difficulties in estimating an accurate emissions. Therefore, an automatically determining method for the most suitable value of R and B with an error measurement criteria and posteriori emissions accuracy is required. We determined the parameters through a sensitivity analysis, and improved the accuracy of posteriori emissions estimation. Inverse modeling methods used in the emissions estimation are pseudo inverse, NNLS (Nonnegative Least Square), and BA(Bayesian Approach). Pseudo inverse has a small error, but has negative values of emissions. In order to resolve the problem, NNLS is used. It has a unrealistic emissions, too. The problems are resolved with BA(Bayesian Approach). We showed the effectiveness and the accuracy of three methods through case studies.

Analysis of Domestic and Foreign Contributions using DDM in CMAQ during Particulate Matter Episode Period of February 2014 in Seoul (2014년 2월 서울의 고농도 미세먼지 기간 중에 CMAQ-DDM을 이용한 국내외 기여도 분석)

  • Kim, Jong-Hee;Choi, Dae-Ryun;Koo, Youn-Seo;Lee, Jae-Bum;Park, Hyun-Ju
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.1
    • /
    • pp.82-99
    • /
    • 2016
  • This study was carried out to understand the regional contribution of Particulate Matter (PM) emissions from East Asia ($82^{\circ}{\sim}149^{\circ}E$, $18^{\circ}{\sim}53^{\circ}N$) to Seoul during high concentration period in February 2014. The Community Multi-scale Air Quality (CMAQ) version 5.0.2 with Decoupled Direct Method (DDM) was used to analyze levels of contributions over Seoul. In order to validate model performance of the CMAQ, predicted PM and its chemical species concentrations were compared to observations in China and Seoul. Model predictions could depict the daily and hourly variations of observed PM. The calculated PM concentrations, however, had a tendency of underestimation. The discrepancies are due to uncertainties of meteorological data, emission inventories and CMAQ model itself. The high PM concentration in Seoul was induced by stationary anticyclone over the West Coast of Korea during 24 to 27 February. The DDM in CMAQ was used to analyze the contributions of emissions from East Asia on Seoul during this PM episode. $PM_{10}$ concentration in Seoul is contributed by 39.77%~53.19% from China industrial and urban region, 15.37%~37.10% from South Korea, and 9.03%~18.05% North Korea. These indicate that $PM_{10}$ concentrations in Seoul during the episode period are dominated by long-range transport from China region as well as domestic sources. It was also found that the largest contribution region in China were Shandong peninsula during the PM event period.

Advanced Forecasting Approach to Improve Uncertainty of Solar Irradiance Associated with Aerosol Direct Effects

  • Kim, Dong Hyeok;Yoo, Jung Woo;Lee, Hwa Woon;Park, Soon Young;Kim, Hyun Goo
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1167-1180
    • /
    • 2017
  • Numerical Weather Prediction (NWP) models such as the Weather Research and Forecasting (WRF) model are essential for forecasting one-day-ahead solar irradiance. In order to evaluate the performance of the WRF in forecasting solar irradiance over the Korean Peninsula, we compared WRF prediction data from 2008 to 2010 corresponding to weather observation data (OBS) from the Korean Meteorological Administration (KMA). The WRF model showed poor performance at polluted regions such as Seoul and Suwon where the relative Root Mean Square Error (rRMSE) is over 30%. Predictions by the WRF model alone had a large amount of potential error because of the lack of actual aerosol radiative feedbacks. For the purpose of reducing this error induced by atmospheric particles, i.e., aerosols, the WRF model was coupled with the Community Multiscale Air Quality (CMAQ) model. The coupled system makes it possible to estimate the radiative feedbacks of aerosols on the solar irradiance. As a result, the solar irradiance estimated by the coupled system showed a strong dependence on both the aerosol spatial distributions and the associated optical properties. In the NF (No Feedback) case, which refers to the WRF-only stimulated system without aerosol feedbacks, the GHI was overestimated by $50-200W\;m^{-2}$ compared with OBS derived values at each site. In the YF (Yes Feedback) case, in contrast, which refers to the WRF-CMAQ two-way coupled system, the rRMSE was significantly improved by 3.1-3.7% at Suwon and Seoul where the Particulate Matter (PM) concentrations, specifically, those related to the $PM_{10}$ size fraction, were over $100{\mu}g\;m^{-3}$. Thus, the coupled system showed promise for acquiring more accurate solar irradiance forecasts.

Development of a Real-time Air-quality Forecasting System Using the Statistical Model (PM-10) (통계모델을 이용한 실시간 오염도 예보 시스템 개발 (PM-10))

  • 구윤서;권희용;윤희영
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.11a
    • /
    • pp.445-446
    • /
    • 2003
  • 대기오염물질은 배출되면 인위적으로 제거하는 과정이 용이하지 않을 뿐만 아니라 인체, 자연생태계 및 재산상에 다방면으로 피해를 주는 특성을 가지고 있다. 그중에서도 호흡성 먼지 또는 미세먼지라고 부르고 있는 PM-10은 대기 중 체류시간이 길며 인체에 대한 위해도를 갖고 있으나 최선의 대처 방법은 외출을 삼가하는 등의 미세먼지에 대한 노출을 사전에 방지 하는 방법밖에 없는 것으로 알려져 있다. 따라서 미세먼지에 대한 노출을 사전에 막고 이에 대한 대처를 위하여 미세먼지농도의 예보 및 경보 시스템 체제를 가동해야 할 필요성이 대두되고 있다. (중략)

  • PDF

Effects of Resolution, Cumulus Parameterization Scheme, and Probability Forecasting on Precipitation Forecasts in a High-Resolution Limited-Area Ensemble Prediction System

  • On, Nuri;Kim, Hyun Mee;Kim, SeHyun
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.623-637
    • /
    • 2018
  • This study investigates the effects of horizontal resolution, cumulus parameterization scheme (CPS), and probability forecasting on precipitation forecasts over the Korean Peninsula from 00 UTC 15 August to 12 UTC 14 September 2013, using the limited-area ensemble prediction system (LEPS) of the Korea Meteorological Administration. To investigate the effect of resolution, the control members of the LEPS with 1.5- and 3-km resolution were compared. Two 3-km experiments with and without the CPS were conducted for the control member, because a 3-km resolution lies within the gray zone. For probability forecasting, 12 ensemble members with 3-km resolution were run using the LEPS. The forecast performance was evaluated for both the whole study period and precipitation cases categorized by synoptic forcing. The performance of precipitation forecasts using the 1.5-km resolution was better than that using the 3-km resolution for both the total period and individual cases. The result of the 3-km resolution experiment with the CPS did not differ significantly from that without it. The 3-km ensemble mean and probability matching (PM) performed better than the 3-km control member, regardless of the use of the CPS. The PM complemented the defect of the ensemble mean, which better predicts precipitation regions but underestimates precipitation amount by averaging ensembles, compared to the control member. Further, both the 3-km ensemble mean and PM outperformed the 1.5-km control member, which implies that the lower performance of the 3-km control member compared to the 1.5-km control member was complemented by probability forecasting.