• Title/Summary/Keyword: $PIP_2$-hydrolysis

Search Result 8, Processing Time 0.024 seconds

Negative self-regulation of transient receptor potential canonical 4 by the specific interaction with phospholipase C-δ1

  • Juyeon Ko;Jinhyeong Kim;Jongyun Myeong;Misun Kwak;Insuk So
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.2
    • /
    • pp.187-196
    • /
    • 2023
  • Transient receptor potential canonical (TRPC) channels are non-selective calcium-permeable cation channels. It is suggested that TRPC4β is regulated by phospholipase C (PLC) signaling and is especially maintained by phosphatidylinositol 4,5-bisphosphate (PIP2). In this study, we present the regulation mechanism of the TRPC4 channel with PIP2 hydrolysis which is mediated by a channel-bound PLCδ1 but not by the GqPCR signaling pathway. Our electrophysiological recordings demonstrate that the Ca2+ via an open TRPC4 channel activates PLCδ1 in the physiological range, and it causes the decrease of current amplitude. The existence of PLCδ1 accelerated PIP2 depletion when the channel was activated by an agonist. Interestingly, PLCδ1 mutants which have lost the ability to regulate PIP2 level failed to reduce the TRPC4 current amplitude. Our results demonstrate that TRPC4 self-regulates its activity by allowing Ca2+ ions into the cell and promoting the PIP2 hydrolyzing activity of PLCδ1.

Inhibitory Effects of Panaxatriol from Panax ginseng C. A. Meyer on Phosphoinositide Breakdown Induced by Thrombin in Platelets

  • Park, Kyeong-Mee;Rhee, Man-Hee;Shin, Han-Jae;Song, Yong-Bum;Hyun, Hak-Chul;Park, Ki-Hyun;Cho, Hyun-Jeong;Choi, Sun-A;Kang, Hyo-Chan;Kim, Kyoung-Jin;Kim, Hyeong-Soo;Kang, Hee-Jin;Ok, Woo-Jeong;Lee, Dong-Ha;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.32 no.2
    • /
    • pp.107-113
    • /
    • 2008
  • In this study, we have investigated the effect of panaxatriol (PT) on phosphoinositides (PIS) breakdown and $Ca^{2+}$-elevation in thrombin-induced platelet aggregation. Thrombin (5U/ml), a potent platelet agonist which activates phospholipase $C_{\beta}$ via protease activated receptor (PAR), hydrolyzed PIS in platelet membrane. The phosphatidylinositol 4, 5-bisphosphate $(PIP_2)$ was hydrolyzed after 10 sec of the thrombin-stimulation, and both the phosphatidylinositol 4-monophosphate (PIP) and phosphatidylinositol (PI) were brokendown after 30 sec of the thrombin-stimulation. However, PT inhibited the thrombin-stimulated hydrolysis of $PIP_2$, PIP, and PI. On the other hand, thrombin increased the level of phosphatidic acid (PA) which is phosphorylated from diacylglycerol (DG) generated by PIS-hydrolysis. However, Pr inhibited the thrombin-increased PA level non-significantly. Thrombin increased cytosolic free $Ca^{2+}([Ca^{2+}])_i$) up to 72% as compared with control $(30.8{\pm}0.9 nM)$ in intact platelet. However, PT (100 ${\mu}g/ml$) inhibited the thrombin-elevated $[Ca^{2+}]_i$ to 100%. These results suggest that PT may have a beneficial effect on platelet aggregation-mediated thrombotic disease by inhibiting thrombin-induced platelet aggregation via suppression of the $[Ca^{2+}]_i$ level and PIS breakdown.

Characterization of Phosphatidylcholine-Hydrolyzing Phospholipase D in the Scuticociliate Parasite, Uronema marinum

  • Seo, Jung-Soo;Kim, Moo-Sang;Kim, Na-Young;Ahn, Sang-Jung;Jee, Bo-Young;Jung, Sung-Hee;Kim, Jin-Woo;Kim, Ki-Hong;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • We report the existence of new type of phosphatidylcholine-hydrolyzing phospholipase D (PLD), which has been characterized and partially purified in the scuticociliate, Uronema marinum. The enzyme from partial purification showed that it was existed in membrane fraction and was a neutral PLD, which catalyzed both transphosphatidylation and hydrolysis reaction. The activity of partially purified membrane-bound PLD was also found to be optimal at pH 7.0-7.5 for 2 hours at 37℃ and depended strictly on the presence of Ca2+ (2.5 mM) and Mg2+ (1.6 mM). Immunoblot analysis indicated that the enzyme was distinct from hPLD1 (human PLD1) and hPLD2 (human PLD2) because it was not recognized by a polyclonal antibody raised to the 12 terminal amino acid of these enzymes. We also found that the membrane-bound PLD is a PIP2-dependent PLD and that GTP-binding proteins are not implicated in the regulation of this enzyme: This enzyme activity is markedly stimulated by phosphatidylinositol 4,5-bisphosphate (PIP2) but not by the small G-protein Arf and GTPrS. In addition, this enzyme was capable of hydrolyzing phosphatidylcholine (PC) but not phosphatidylethanolamine (PE), implying that PC was a preferred substrate.

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

Heat Shock Protein $90{\beta}$ Inhibits Phospholipase $C{\gamma}-1$ Activity in vitro

  • Cho, Sang-Min;Kim, Sung-Kuk;Chang, Jong-Soo
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.419-425
    • /
    • 2006
  • Phospholipase $C-{\gamma}1\;(PLC-{\gamma}1)$ is an important signaling molecule for cell proliferation and differentiation. $PLC-{\gamma}1$ contains two pleckstrin homology (PH) domains, which are responsible for protein-protein interaction and protein-lipid interaction. $PLC-{\gamma}1$ also has two Src homology (SH)2 domains and a SH3 domain, which are responsible for protein- protein interaction. To identity proteins that specifically binds to PH domain of $PLC-{\gamma}1$, we prepared and incubated the glutathione S-transferase(GST)-fused PH domains of $PLC-{\gamma}1$ with COS7 cell lysate. We found that 90 kDa protein specifically binds to PH domain of $PLC-{\gamma}1$. By matrix-assisted laser desorption ionization time of flight-mass spectrometry, the 90 kDa protein revealed to be heat shock protein (Hsp) $90{\beta}$. Hsp $90{\beta}$ is a molecular chaperone that stabilizes and facilitates the folding of proteins that are involved in cell signaling, including receptors for steroids hormones and a variety of protein kinases. To know whether Hsp $90{\beta}$ affects on $PLC-{\gamma}1$ activity, we performed $PIP_2$ hydrolyzing activity of $PLC-{\gamma}1$ in the presence of purified Hsp $90{\beta}$ in vitro. Our results show that the Hsp $90{\beta}$ dose-dependently inhibits the enzymatic activity of $PLC-{\gamma}1$ and further suggest that Hsp $90{\beta}$ regulates cell growth and differentiation via regulation of $PLC-{\gamma}1$ activity.

  • PDF

Biochemical Characterization of Phospholipase C$\delta$from liver of Mud loach (Misgurnus mizolepis) (미꾸라지 간으로부터 포스포리파아제 C델타 단백질의 생화학적 특성)

  • Seo, Jung-Soo;Lim, Sang-Uk;Kim, Na-Young;Lee, Sang-Hwan;Oh, Hyun-Suk;Lee, Hyung-Ho;Chung, Joon-Ki
    • Journal of fish pathology
    • /
    • v.18 no.1
    • /
    • pp.67-80
    • /
    • 2005
  • Phosphoinositide-specific phospholipase $C\delta$ $PLC\delta$) plays an important role in many cellular responses and is involved in the production of second messenger. The present study was conducted to obtain the biochemical characteristics of the expressed recombinant $PLC\delta$ in E. coli cloned from Misgurnus mizolepis and partially purified $PLC\delta$ enzymes from liver tissues of M. mizolepis (wild ML-$PLC\delta$). The ML $PLC\delta$ gene was cloned and expressed under the previous report (Kim et al., 2004), and purified the recombinant protein by successive chromatography using $Ni^{2+}$-NTA affinity column and gel iltration FPLC column. The wild ML-$PLC\delta$ protein was solublized with 2 M KCI and purified by successive chromatography on open heparin-Sephagel and analytical TSKgel heparin-5PW. Both the recombinant and wild ML-$PLC\delta$ form of protein showed a concentration-dependent PLC activity to phosphatidylinositol 4,5-bis-phosphate (PIP$_2$) or phosphatidylinositol (PI). Its activity was absolutely $Ca^{2+}$- dependant, which was similar to mammalian $PLC\delta$ isozymes. Maximal PI-hydrolytic activations of recombinant and wild ML- TEX>$PLC\delta$ was at pH 7.0 and pH 7.5, respectively. In addition, the enzymatic activities of recombinant and wild ML-$PLC\delta$ were increased in concentration-dependent manner by detergent, such as sodium deoxycholate SDC), phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The activities decreased in contrast by a polyamine, such as spermine. Western blotting showed that several types of $PLC\delta$ isozymes exist in various organs. Taken together our results, it suggested that the biochemical characteristics of ML-$PLC\delta$ are similar with those of mammalian $PLC\delta1$ and ${\delta}3$ isozymes.

THE AFFINITY OF CALMODULIN-AFFIGEL FOR INOSITOL TRIPHOSPHATE KINASE FROM BOVINE BRAIN (소의 뇌 Inositol triphosphate kinase와 Calmodulin-Affigel과의 친화도)

  • Lim, Sung-Woo;Kim, Jung-Hye
    • Journal of Yeungnam Medical Science
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1990
  • The one event on signalling mechanism is the cleavage by adenyl cyclase of ATP into second messenger, cyclic AMP. The other transfer system of inositol metabolism. it is widely recognized that hydrolysis of the minor membrane lipid phosphoinositide bisphosphate($PIP_2$) initiated by occupation of certain receptors and catalyzed by phospholipase C, lead to toe generation of the two intracellular messengers, inositol triphosphate($IP_3$) and diacylglycerol(DG). $IP_3$ is converted to inositol tetrakisphosphate($IP_4$) by $IP_3$ kinase. In the present study, it is that purification of calmodulin is used by phenyl-Sepharose CL-4B chromatography. it's molecular weigh, 17.000 in SDS-polyacrylamide gel electrophoresis. In order to observe the affinity between calmodulin (CaM)-Affigel 15 and $IP_3$ kinase, and isolated $IP_3$ kinase, was applied in CaM-Affigel with $Ca^{2+}$ equilibirum buffer and EGTA equilibirum buffer. We compared with binding and elution effect of $IP_3$ kinase in several condition of buffer. In affinity of binding. $Ca^{2+}$ equilibrium buffer was in the most proper condition. and elution, CaM/$Ca^{2+}$ buffer(CE1 10.36, CE2 12. 76pM/min/mg of protein) was effected much more than EGTA buffer(E2 1.48, E3 2.43pM/min/mg of protein), but CaM/$Ca^{2+}$ stimulate the activity of $IP_3$ kinase. And then, several detergents such as sodium deoxycholate, tween 20. cholic acid, polyethylene glycol, chaps were applied. The 0.2% chaps buffer(E2 23.19, E3 8.05pM/min/mg of protein) was the most effective in elution of $IP_3$ kinase.

  • PDF

Increased Expression of Phospholipase C-$\gamma1$ Activator Protein, AHNAK in Human Lung Cancer Tissues (인체 폐암조직에서 Phospholipase C-$\gamma1$의 활성화 단백, AHNAK의 발현양상)

  • Oh, Yoon-Jung;Park, Chun-Seong;Choi, So-Yeon;Cheong, Seong-Cheoll;Lee, Sun-Min;Hwang, Sung-Chul;Lee, Yi-Hyeong;Hahn, Myung-Ho;Lee, Kyi-Beom;Ryu, Han-Young;Ha, Mahn-Joon;Bae, Yoon-Su;Rhee, Seo-Goo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.3
    • /
    • pp.347-355
    • /
    • 1999
  • Background: Phospholipase C(PLC) plays a central role in cellular signal transduction and is important in cellular growth, differentiation and transformation. There are currently ten known mammalian isozymes of PLC reported to this date. Hydrolysis of phosphatidylinositol 4,5-bisphosphate($PIP_2$) by PLC produces two important second messengers, inositol 1,4,5-trisphosphate($IP_3$) and diacylglycerol. PLC-${\gamma}1$, previously, was known to be activated mainly through growth factor receptor tyrosine kinase. Other mechanisms of activating PLC-yl have been reported such as activation through tau protein in the presence of arachidonic acid in bovine brain and activation by $IP_3$, phosphatidic acid, etc. Very recently, another PLC-${\gamma}1$ activator protein such as tau has been found in bovine lung tissue, which now is considered to be AHNAK protein. But there has been no report concerning AHNAK and its associated disease to this date. In this study, we examined the expression of the PLC-${\gamma}1$ activator, AHNAK, in lung cancer specimens and their paired normal. Methods: From surgically resected human lung cancer tissues taken from twenty-eight patients and their paired normal counterparts, we evaluated expression level of AHNAK protein using immunoblot analysis of total tissue extract Immunohistochemical stain was performed with primary antibody against AHNAK protein. Results: Twenty-two among twenty-eight lung cancer tissues showed overexpression of AHNAK protein (eight of fourteen squamous cell lung cancers, all of fourteen adenocarcinomas). The resulting bands were multiple ranging from 70 to 200 kDa in molecular weight and each band was indistinct and formed a smear, reflecting mobility shift mainly due to proteolysis during extraction process. On immunohistochemistry, lung cancer tissues showed a very heavy, dense staining with anti-AHNAK protein antibody as compared to the surrounding normal lung tissue, coresponding well with the results of the western blot Conclusion: The overexpression of PLC-${\gamma}1$ activator protein, AHNAK in lung cancer may provide evidence that the AHNAK protein and PLC-${\gamma}1$ act in concerted manner in carcinogenesis.

  • PDF