• Title/Summary/Keyword: $PGE_{2}$

Search Result 1,088, Processing Time 0.022 seconds

Immunostimulatory Effects of Cordyceps militaris on Macrophages through the Enhanced Production of Cytokines via the Activation of NF-${\kappa}B$

  • Shin, Seul-Mee;Kwon, Jeong-Hak;Lee, Sung-Won;Kong, Hyun-Seok;Lee, Seung-Jeong;Lee, Chong-Kil;Cho, Kyung-Hae;Ha, Nam-Joo;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.10 no.2
    • /
    • pp.55-63
    • /
    • 2010
  • Background: Cordyceps militaris has been used in traditional medicine to treat numerous diseases and has been reported to possess both antitumor and immunomodulatory activities in vitro and in vivo. However, the pharmacological and biochemical mechanisms of Cordyceps militaris extract (CME) on macrophages have not been clearly elucidated. In the present study, we examined how CME induces the production of proinflammatory cytokines, transcription factor, and the expression of co-stimulatory molecules. Methods: We confirmed the mRNA and protein levels of proinflammatory cytokines through RT-PCR and western blot analysis, followed by a FACS analysis for surface molecules. Results: CME dose dependently increased the production of NO and proinflammatory cytokines such as IL-$1{\beta}$, IL-6, TNF-${\alpha}$, and $PGE_2$, and it induced the protein levels of iNOS, COX-2, and proinflammatory cytokines in a concentrationdependent manner, as determined by western blot and RT-PCR analysis, respectively. The expression of co-stimulatory molecules such as ICAM-1, B7-1, and B7-2 was also enhanced by CME. Furthermore, the activation of the nuclear transcription factor, NF-${\kappa}B$ in macrophages was stimulated by CME. Conclusion: Based on these observations, CME increased proinflammatory cytokines through the activation of NF-${\kappa}B$, further suggesting that CME may prove useful as an immune-enhancing agent in the treatment of immunological disease.

The Ameliorative Effects of Korean Bean-Leaves on Inflammation and Liver Injury in Obese Rat Model

  • Jin, Byung-Moon;Choi, Seok-Cheol;Lee, Hye-Sook;Jung, Sang-Bong;Hyun, Kyung-Yae
    • Biomedical Science Letters
    • /
    • v.19 no.3
    • /
    • pp.195-205
    • /
    • 2013
  • Obesity may cause metabolic syndrome and adult diseases. This study was undertaken to investigate the ameliorative or useful effects of beanleaves on inflammation and liver damage in obese rat models. Rats were divided into three groups: a control group (normal diet, n=6), a fat diet group (45%-fat diet, n=7), and a bean leaf group (45%-fat+Korean bean leaves diet, n=7). Body weights in the bean leaf group were lower than those of the fat group (P<0.05). Serum tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and prostaglandin $E_2$ ($PGE_2$) concentrations were lower in both the control and bean leaf groups than in the fat group (P<0.001). TNF-${\alpha}$ concentrations in the bean leaf group were slightly higher than in the control group but statistically significant (P<0.05). The bean leaf group histologically exhibited lower fatty degeneration, spotty necrosis, and leukocyte infiltrations in hepatic tissues than those of the fat group. In the homogenized liver tissues, the cyclooxygenase-2 (COX-2) gene was only expressed in the fat group. The gene expression levels of hepatic TNF-${\alpha}$, inducible nitric-oxide synthase, peroxiome proliferator-activated receptor-${\alpha}$ (PPAR-${\alpha}$), poly (ADP-ribose) polymerase (PARP), and transforming growth factor-${\beta}1$ (TGF-${\beta}1$) were weaker in the bean leaf group than in the fat group. These results suggest that adding bean-leaves to the diet may ameliorate obesity-induced systemic inflammation and liver damage and that bean leaves may be a useful food for preventing obesity and thereby metabolic syndrome and adult diseases.

Anti-Inflammatory Effect of Rosa rugosa Flower Extract in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

  • Tursun, Xirali;Zhao, Yongxin;Talat, Zulfiya;Xin, Xuelei;Tursun, Adila;Abdulla, Rahima;AkberAisa, Haji
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.184-190
    • /
    • 2016
  • Rosa rugosa Thunb, a deciduous shrub of the genus Rosa, has been widely used to treat stomach aches, diarrhoea, pain, and chronic inflammatory disease in eastern Asia. In recent years, our research team has extensively studied the Rosa rugosa flower extract, and specifically undertook pharmacological experiments which have optimized the extraction process. Our methods have yielded a standard extract enriched in phenolic compounds, named PRE. Herein, we expand our efforts and evaluated the anti-inflammatory activity of PRE on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophages. PRE significantly inhibited production of nitric oxide (NO), prostaglandin $E_2(PGE_2)$, tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and interleukin $1{\beta}$ (IL-$1{\beta}$), as well as expression of their synthesizing enzymes, inducible nitric oxide synthase (iNOS) and cyclooxygenase2 (COX-2). Furthermore, PRE inhibited activity of mitogen-activated protein kinases (MAPK) as well as nuclear factor-kappa B (NF-${\kappa}B$) signaling pathway. Our findings are the first to explain the anti-inflammatory mechanism by PRE in LPS-stimulated macrophages. Given these results, we propose that PRE has therapeutic potential in the prevention of inflammatory disorders.

The Clinical Effect of Bosingunyang-tang on Chronic Non-bacterial Prostatitis/Chronic Pelvic Pain Syndrome : Randomized Double-blind, Placebo-controlled Clinical Trial

  • Song, Moon-Koo;Kang, Ji-Suck;Kang, Cheol-Ho;Ahn, Young-Min;Ahn, Se-Young;Doo, Ho-Kyung;Lee, Byung-Cheol
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.800-809
    • /
    • 2008
  • Objective : Although chronic prostatitis/chronic pelvic pain syndrcme(CP/CPPS) is a common disease, there is no consensus on the etiology or pathology and treatment. This was a double-blinded, placebo-controlled, randomized clinical trial, investigating the therapeutic effects of the traditional Korean medicine, Bosingunyang-tang(BSGYT). Method : Participants who met US National Institutes of Health (NIH) consensus criteria for CP/CPPS were entered after applying inclusion/exclusion criteria. They were randomized to the BSGYT or placebo group. and treated three times a day for 6 weeks. NIH-Chronic Prostatitis Symptom Index (NIH-CPSI) was used to estimate the clinical symptoms of CP/CPPS. Prostaglandin E2 and ${\beta}$-endorphin in prostatic fluid, collected by 2-glass pre-massage and post-massage test, were analyzed as factors associated with pain and inflammation. Result : The mean decrease in NIH-CPSI total score of the BSGYT group was 11.0 points, which is 5.7 points more than the placebo group. (Mann Whitney test P=0.038) Also the BSGYT group showed three times higher response rate than the placebo group in NIH-CPSI pain subscale score. (Fisher's exact test P=0.027) In those responders, prostaglandin E2 decreased significantly. (Wilcoxon's signed-ranks test P=0.037). No specific side effects were observed. Conclusion : After a 6-week treatment period, BSGYT improved clinical symptoms of CP/CPPS patients by decreasing PGE2 level in prostatic fluid.

  • PDF

Synthesis and Antiinflammatory Effects of a New Tricyclic Diterpene and Its Analogues as Potent COX-2 Inhibitors

  • Suh, Young-Ger;Kim, Young-Ho;Park, Hyoung-Sup;Lee, Hye-Kyung;Park, Young-Hoon;Kim, Ji-Young;Min, Kyung-Hoon;Shin, Dong-Yun;Jun, Ra-Ok
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2000.04a
    • /
    • pp.10-14
    • /
    • 2000
  • The cycloooxygenase enzymes catalyze the oxidative conversion of arachidonic acid into prostag1andin H$_2$Which mediates both benificial and pathological effects. The COX-1 is constitutively expressed in most tissues and in blood platelets wherease the expression of COX-2 isoform is induced in response to inflmmatory stimuli such as cyctokynes. Thus the identification of a novel COX-2 selective inhibitor should offer excellent antiinflammatory activity with minimal side effects such as gastrointestinal toxicity. Recently, a group of structurally unique and biologically active pimarane diterpenoids has been isolated from indigenous Korean medicinal plants. These new diterpenoids turned out to be potential analgesic and antiinflammatory agent due to their potent inhibitory activities of prostaglandin synthesis. We have also found that the inhibition of PGE$_2$synthesis is attributed to the potent COX inhibition by pimarane diterpenoid in arachidonic acid cascade. In conjunction with development of new analgesic and nonsteroidal antiinflammatory agent, a series of works on these diterpenoids have been extensively carried out in our laboratories. These efforts involve the structure-activity relationship of pimaradienoic acid, molecular modelings and COX inibitory activities as well as actiinflammatory effects of its structural analogues. In addition, the total syntheses of the new natural pimarane diterpenoids, their stereoisomers and other structural variants were intensively investigated.

  • PDF

EFFECTS OF INHIBITORY DRUGS ON THE ARACHIDONIC ACID METABOLISM OF PERIODONTAL TISSUE (치은 Arachidonic acid 대사산물의 억제약물에 관한 실험적 연구)

  • Han, Se-Hee;Oh, Kwi-Ok;Kim, Hyung-Seop
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.2
    • /
    • pp.243-259
    • /
    • 1993
  • The bone resorbing activity of $PGE_2$ and elevated level of prostaglandins(PGs) and thromboxanes (TXs) in inflamed gingiva which are cyclooxygenase(C) metabolites have been well documented. Nonsteroidal anti-inflammatory drugs(NSAIDs) have been known to suppress gingival inflammation and bone resorption through the specific inhibitory action on the C pathway thereby decrease of various C metabolites. Recent studies provide unequivocal results that gingival tissue metabolizes arachidonic acid(AA) mainly through lipoxygenase(L) pathway. And the results of our previous experiments suggest that indomethacin may have inhibitory action on L as well as C. Thus we started this study to show the influences of several C inhibitors on the L activity at therapeutic and toxic dosage. Periodontal tissue samples were obtained from patients with advanced periodontitis and incubated with $^{14}C-AA(0.2{\mu}Ci)$ and various enzyme inhibitors. The tissue lipid extracts were separated by means of thin layer chromatography(TLC) and analyzed by means of autoradiography and TLC analyzer. Our results showed that aspirin inhibited C more selectively than L, however at higher concentration it also decreased HETEs production significantly. Indomethacin showed dose-dependent inhibition of L as well as C and all of the L metabolites were decreased to the same degree by high concentration of indomethacin. AA-861, which is an experimental tool of selective L inhibitor, showed inhibition of HETEs production but no effect on the production of $TXB_2$, PGs and $LTB_4$. Various propionic acid derivatives NSAIDs(ibuprofen, flurbiprofen, naproxen) showed the same patterns of effect on AA metabolism each other that was profound inhibition of PGs production, to the less degree HETEs and $TXB_2$ production, and of no effect on the $LTB_4$ production.

  • PDF

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.

The Effect of Bee Venom Pharmacopuncture Therapy on the Condition of Different Concentration in Rheumatoid Arthritis Rat Model (흰쥐의 류마티스 관절염 모델에서 봉약침의 농도별 처리 조건에 따른 치료 효과)

  • You, Deok-Seon;Yeom, Seung-Ryong;Lee, Su-Kyung;Kwon, Young-Dal;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.21 no.2
    • /
    • pp.101-123
    • /
    • 2011
  • Objectives : The aim was to study the effect of bee venom pharmacopuncture therapy with different concentration on rheumatoid arthritis rat model. Methods : We enforced a bee venom pharmacopuncture therapy with different concentration on rheumatoid arthritis rat model by the intradermal injection of chicken type II collagen emulsified. 14 days after the onset of the rheumatoid arthritis rat model, a fixed volume of bee venom was daily injected to ST-35 acupoint in the rat's knee joint for 2-3 weeks. The hind paw volume, arthritic index, arthritic flexion pain test, pain threshold, and serum analysis (CRP, $PGE_2$, ALT, AST) were analyzed, and the expression profiles of COX-2, c-fos, and substance-P at the dorsal horn region of the spinal cord and subchondral bone of the knee joint were also analyzed by using the immunohistochemistry. Results : After the treatment of rheumatoid arthritis rats with bee venom pharmacopuncture, the paw volume of edema of arthritic rats were almost restored to the level of normal group, and behavior tests were very effective. Also the evaluation on the blood serum analysis was remarkable. COX-2, c-fos, and substance-P positive cells in the immunohistological section of dorsal horn region of the spinal cord and subchondral bone of the knee joints were significantly decreased. also the bee venom pharmacopuncture was effective to alleviate their rheumatoid arthritic inflammation cytokine inhibition as regards to the behavior tests and joint histological appearance. Conclusions : Based on the results in this study, bee venom pharmacopuncture with concentrated treatment condition was very effective in low fixed quantity and progressive low increased quantity.

Analysis of Periodontitis Biomarker Expression in Gingival Crevicular Fluids

  • Hwang, Young Sun
    • Journal of dental hygiene science
    • /
    • v.21 no.1
    • /
    • pp.45-51
    • /
    • 2021
  • Background: Periodontal disease, also known as gum disease, is a major dental inflammatory disease with a very high prevalence; it is the main cause of tooth loss. Therefore, diagnostic biomarkers that can monitor gum inflammation are important for oral healthcare. Since the gingival crevicular fluid (GCF) adequately reflects changes in the periodontal environment, they have become a target for the development of effective diagnostic biomarkers for periodontitis. In the present study, the level of the target molecules suggested as diagnostic biomarkers for periodontitis were analyzed in GCF samples collected from healthy individuals and periodontitis patients. In addition, useful targets for the diagnosis of periodontitis were evaluated. Methods: GCF samples were collected from healthy individuals and periodontitis patients using absorbent paper points. SDS-PAGE and Coomassie staining were performed for protein analysis. The protein concentrations of GCF specimens were determined using the Bradford method. The levels of the target molecules appropriate for diagnosing periodontal disease were measured by ELISA, according to the manufacturer's protocol. Results: The protein concentration of GCF collected from periodontitis patients was 3.72 fold higher than that in an equal volume of GCF collected from healthy individuals. ELISA analysis showed that the level of interukin-6 (IL-6), IL-8, metalloproteinases 2 (MMP-2), MMP-9, tumor necrosis factor-alpha (TNF-α), azurocidin, and odontogenic ameloblast-associated protein (ODAM) were higher in the GCF samples from the periodontitis patients than in those from the healthy individuals. However, the level of IL-6 and TNF-α were relatively low (> 5 pg/ml). The prostaglandin E2 (PGE2) levels were not significantly different between the two GCF samples. Conclusion: These results indicate that IL-8, MMP-2, MMP-9, azurocidin, and ODAM are potentially useful diagnostic biomarkers for periodontitis; combining multiple biomarkers will improve the diagnostic accuracy of periodontitis.

Anti-Inflammatory Activities of (+)-Afzelechin against Lipopolysaccharide-Induced Inflammation

  • In-Chul Lee;Jong-Sup Bae
    • Biomolecules & Therapeutics
    • /
    • v.32 no.4
    • /
    • pp.467-473
    • /
    • 2024
  • In this study, we investigated the potential protective effects of (+)-afzelechin (AZC), a natural compound that is derived from Bergenia ligulata, on lipopolysaccharide (LPS)-induced inflammatory responses. AZC is known to have antioxidant, anticancer, antimicrobial, and cardiovascular protective properties. However, knowledge regarding the therapeutic potential of AZC against LPS-induced inflammatory responses is limited. Thus, we investigated the protective attributes of AZC against inflammatory damage caused by LPS exposure. We examined the effects of AZC on heme oxygenase (HO)-1, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) in LPS-activated human umbilical vein endothelial cells (HUVECs). In addition, the effects of AZC on the expression of iNOS, tumor necrosis factor (TNF)-α, and interleukin (IL)-1β were analyzed in the lung tissues of LPS-injected mice. Data revealed that AZC promoted the production of HO-1, inhibited the interaction between luciferase and nuclear factor (NF)-κB, and reduced the levels of COX-2/PGE2 and iNOS/NO, thereby leading to a decrease in the signal transducer and activator of transcription (STAT)-1 phosphorylation. Moreover, AZC facilitated the nuclear translocation of Nrf2, increased the binding activity between Nrf2 and the antioxidant response elements (AREs), and lowered the expression of IL-1β in the LPS-treated HUVECs. In the animal model, AZC significantly reduced the expression of iNOS in the lung tissue structure and the TNF-α level in the bronchoalveolar lavage fluid. These findings demonstrate that AZC possesses anti-inflammatory properties that regulate iNOS through the inhibition of both NF-κB expression and p-STAT-1. Consequently, AZC has potential as a future candidate for the development of new clinical substances for the treatment of pathological inflammation.