• 제목/요약/키워드: $Ozone/H_2O_2$

검색결과 172건 처리시간 0.026초

부식산 제거율 향상을 위한 오존공정의 개선에 관한 연구 (Improvement of Ozone Process for Removal Rate Elevation of Humic Acid)

  • 이유미;손일호;이동석
    • 산업기술연구
    • /
    • 제27권A호
    • /
    • pp.25-29
    • /
    • 2007
  • Ozone alone, Ozone/GAC, Ozone/$H_2O_2$ and Ozone/GAC/$H_2O_2$ processes were introduced for treatment of humic acid, which is a representative refractory organic compound. $H_2O_2$ and GAC used as catalysts for experiment. The treatment efficiencies of humic acid in each process were analyzed for pH variation, DOC removal, and $UV_{254}$ decrease. $UV_{254}$ decrease in Ozone/GAC and Ozone/GAC/$H_2O_2$ processes were the highest with about 93%, and Ozone alone and Ozone/$H_2O_2$ processes were 88%. DOC removal in Ozone/GAC/$H_2O_2$ process was the highest with 71%. Removal by Ozone/GAC, Ozone alone, and Ozone/$H_2O_2$ processes were 66%, 39%, and 47%, respectively.

  • PDF

마이크로버블 오존 고도산화를 이용한 축산폐수 혐기소화 배출수의 COD와 색도의 제거 (Removal of COD and Color from Anaerobic Digestion Effluent of Livestock Wastewater by Advanced Oxidation Using Microbubbled Ozone)

  • 이인규;이은영;이혜정;이기세
    • 공업화학
    • /
    • 제22권6호
    • /
    • pp.617-622
    • /
    • 2011
  • 축산폐수 혐기소화 유출수 중의 생물학적 난분해성 유기물의 분해를 위하여 오존 기반의 고도산화 기술을 적용하였다. 배출수의 COD 및 색도는 각각 9200~9500 mg/L 및 0.384 (400 nm)이고 1/10 희석하여 실험에 사용하였다. 공급 오존은 버블의 크기가 $13{\mu}m$인 마이크로버블 오존과 $105{\mu}m$인 일반 오존버블과의 차이를 고찰하였다. 마이크로버블 오존을 사용함으로써 오존의 용해도와 라디칼 생성량이 증가되었고 일반 오존버블에 비하여 COD 및 색도의 제거효율이 각각 85% 및 26% 향상되었다. 마이크로버블을 포함한 $O_3/UV$, $O_3/H_2O_2$, $O_3/UV/H_2O_2$의 조합을 비교한 결과 오존 단독 처리에 비하여 색도 제거율이 5~10% 정도 증가되었으며, 오존에 비하여 UV나 $H_2O_2$의 색도제거에 대한 기여가 크지 않음을 알 수 있었다. 반면 COD에 대해서는 $O_3/UV/H_2O_2$ 적용시 오존 단독에 비하여 2배 이상 제거율이 증가하였으며 UV보다는 $H_2O_2$의 기여도가 더 컸다. 한편 마이크로 오존의 사용시 증가된 용존오존 및 라디칼 활성으로 인하여 오존 공급을 중단한 후에도 UV 또는 $H_2O_2$를 적용함으로써 추가적인 COD 분해 효과를 지속적으로 유지할 수 있었다.

고급산화공정을 이용한 염료폐수의 처리기술 연구 (A Study on the Dye Wastewater Treatment by Advanced Oxidation Process)

  • 강태희;오병수;박세준;강민구;김종성;강준원
    • 한국물환경학회지
    • /
    • 제21권3호
    • /
    • pp.267-273
    • /
    • 2005
  • Dye wastewater generally contains strong color and non-biodegradable materials. Therefore, the conventional wastewater treatment plant can hardly meet the regulation of wastewater effluent water. In this study, a pilot plant of the conventional process followed by advanced oxidation process (AOP), was set up to treat the dying wastewater. The treatment efficiencies on the various candidate processes, such as ozone alone, UV alone, ozone/UV, $ozone/H_2O_2$, $H_2O_2/UV$ and $ozone/UV/H_2O_2$, were investigated in the various ozone and $H_2O_2$ doses. As the results, the $ozone/H_2O_2$ process, among the tested processes, showed the highest efficiency for removing color and $COD_{Cr}$. For color removal, the ozone alone process was enough without combining UV or $H_2O_2$. No significantly enhanced efficiency for removing color and $COD_{Cr}$ by UV irradiation was observed because of the very low transmittance of UV light in dye wastewater.

과산화수소와 티오황산나트륨을 이용한 정수처리공정에서의 잔류오존 제거 (Removal of residual ozone in drinking water treatment using hydrogen peroxide and sodium thiosulfate)

  • 권민환;김서희;안용태;정유미;조우현;이경혁;강준원
    • 상하수도학회지
    • /
    • 제29권4호
    • /
    • pp.481-491
    • /
    • 2015
  • The aim of this study was to evaluate the chemical quenching system for residual ozone and to determine the operating condition for the quenching system. Hydrogen peroxide ($H_2O_2$) and sodium thiosulfate ($Na_2S_2O_3$) were investigated as quenching reagents for ozone removal, and the tendency of each chemical was notably different. In the case of $H_2O_2$, the degradation rate of ozone was increased as the concentration of $H_2O_2$ increase, and temperature and pH value have a significant effect on the degradation rate of ozone. On the other hand, the degradation rate of ozone was not affected by the concentration of $Na_2S_2O_3$, temperature and pH value, due to the high reactivity between the ${S_2O_3}^{2-}$ and ozone. This study evaluates the decomposition mechanism of ozone by $H_2O_2$ and $Na_2S_2O_3$ with consideration for the water quality and reaction time. Furthermore, the removal test for the quenching reagents, which can be remained after reaction with ozone, was conducted by GAC process.

Determination of Hydroperoxyl/superoxide Anion Radical (HO2·/O2·-) Concentration in the Decomposition of Ozone Using a Kinetic Method

  • Kwon, Bum-Gun;Lee, Jai H.
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권11호
    • /
    • pp.1785-1790
    • /
    • 2006
  • A novel kinetic method for determination of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition in water is described. In this study, potential interferences of $O_3$ and the hydroxyl radicals, $^{\cdot}OH_{(O3)}$, are suppressed by $HSO_3{^-}/SO_3{^{2-}}$. $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ formed in ozone decomposition reduces $Fe^{3+}$-EDTA into $Fe^{2+}$-EDTA and subsequently the well-known Fenton-like (FL) reaction of $H_2O_2$ and $Fe^{2+}$-EDTA produces the hydroxyl radicals, $^{\cdot}OH_{(FL)}$. Benzoic acid (BA) scavenges $^{\cdot}OH_{(FL)}$ to produce OHBA, which are analyzed by fluorescence detection (${\lambda}_{ex}=320nm$ and ${\lambda}_{ex}=400nm$). The concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition has been determined by the novel kinetic method using the experimentally determined half-life ($t_{1/2}$). The steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ is proportional to the $O_3$ concentration at a given pH. However, the steady-state concentration of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ in ozone decomposition is inversely proportional to pH values. This pH dependence is due to significant loss of $O_2{^{{\cdot}-}}$ by $O_3$ at higher pH conditions. The steady-state concentrations of $HO_2{^{\cdot}}/O_2{^{{\cdot}-}}$ are in the range of $2.49({\pm}0.10){\times}10^{-9}M(pH=4.17){\sim}3.01({\pm}0.07){\times}10^{-10}M(pH=7.59)$ at $[O_3]_o=60{\mu}M$.

오존, 오존/과산화수소와 오존/활성탄 처리에 의한 페놀 및 그 부산물의 제거에 관한 연구 (A Study on Removal of Phenol and Its By-Product by Ozone, Ozone/Hydrogen Peroxide and Ozone/Granular Activated Carbon)

  • 배현주;김영규;정문호
    • 한국환경보건학회지
    • /
    • 제23권3호
    • /
    • pp.121-129
    • /
    • 1997
  • This study was performed to delineate the removal phenol in solutions using of ozone, ozone/$H_2O_2$ and ozone/GAC. The disinfection by-product of phenol by ozonation, hydroquinone, was analyzed and it's control process was investigated. The followings are the conclusions that were derived from this study. 1. The removal efficiency of phenol by ozonation was 58.37%, 48.34%, 42.15%, and 35.41% which the initial concentration of phenol was 5 mg/l, 10 mg/l, 15 mg/l, and 20 mg/l, respectively. 2. The removal efficiency of phenol by ozonation was 42.95% at pH 4.0 and 69.39% at pH 10, respectively. The removal efficiencies were gradually increased, as pH values were increased. 3. With the ozone/$H_2O_2$ combined system, the removal efficiency of phenol was 72.87%. It showed a more complete degradation of phenol with ozone/$H_2O_2$ compared with ozone alone. 4. When ozonation was followed by filtration on GAC, phenol was completely removed. 5. Oxidation, if carried to completion, truly destroys the organic compounds, converting them to carbon dioxide. Unless reaction completely processed, disinfection by-products would be produced. To remove them, ozone/GAC treatment was used. The results showed that disinfection by-product of phenol by ozonation, hydroquinone, was completely removed. These results suggested that ozone/GAC should also be an appropriate way to remove phenol and its by-product.

  • PDF

Comparing the Passivation Quality of Ozone and H2O Oxidant of Atomic Layer Deposited Al2O3 by Post-annealing in N2 and Forming Gas Ambients for Passivated Emitter and Rear Cell (PERC)

  • Cho, Young Joon;Chang, Hyo Sik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.462-462
    • /
    • 2014
  • The effect of rear passivation for passivated emitter and rear cell (PERC) using ozone and H2O oxidant of atomic layer deposited (ALD) Al2O3 was studied by post-annealing in N2 and forming gas ambients. Rear surface of PERC solar cell was passivated by Al2O3 grown by ALD with ozone and H2O oxidant. Al2O3 grown by ALD with ozone oxidant has been known to have many advantages, such as lower interface defects, low leakage current density. Its passivation quality is better than Al2O3 with H2O. Al2O3 layer with 10 nm and 20 nm thickness was grown at $150^{\circ}C$ with ozone oxidant and at $250^{\circ}C$ with H2O oxidant. And then each samples were post-annealled at $450^{\circ}C$ in N2 ambients and at $850^{\circ}C$ in forming gas ambients. The passivation quality was investigated by measuring the minority carrier lifetime respectively. We examined atomic layer deposited Al2O3 such as growth rate, film density, thickness, negative fixed charge density at AlOx/Si interface, and reflectance. The influences of process temperature and heat treatment were investigated using Sinton (WCT-120) by Quasi-Steady State Photoconductance (QSSPC) mode. Ozone-based ALD Al2O3 film shows the best carrier lifetime at lower deposition temperature than H2O-based ALD.

  • PDF

$O_3$/high pH, $O_3/H_2O_2$$O_3/{HCO_3}^-$ 시스템에서의 부식산의 분해 반응 특성 (Degradation of Humic Acids by Ozone/high pH, Ozone/Hydrogen Peroxide and Ozone/Hydrogen Carbonate System)

  • 신현상;김계월;이동석
    • 분석과학
    • /
    • 제13권5호
    • /
    • pp.652-658
    • /
    • 2000
  • 오존 분자와의 직접반응경로 및 OH라디칼을 통한 간접반응경로를 통한 부식산의 분해특성을 TOC, $UV_{254}$ 그리고 오존 소모량의 변화를 통해 살펴보았다. 부식산의 분해를 위한 반응시스템은 오존 단독 처리 외에 OH라디칼의 생성조건을 조사하기위해 pH를 5에서 염기성 영역인 9까지 변화시켰으며, OH라디칼 생성 촉진제인 $H_2O_2$를 5-15 mg/L의 농도로, 그리고 OH라디칼 소거제로서 작용하는 $HCO_3{^-}$는 20-100 mg/L로 변화시키면서 처리하였다. 각 반응 조건에 따른 부식만의 분해특성을 살펴본 결과, TOC 제거율은 주로 0H라디칼에 의한 간접반응의 영향을 받았으며, $UV_{254}$ 감소율은 주로 오존분자와의 직접반응에 의해 효율이 결정되는 반응 경로를 거치는 것으로 나타났다. 또한 오존소모량은 주로 용액의 pH, alkalinity 변화에 따른 영향을 많이 받았다.

  • PDF

OMI 구름 측정 자료들의 비교 분석과 그에 따른 오존 측정에 미치는 영향 평가 (Analyses of the OMI Cloud Retrieval Data and Evaluation of Its Impact on Ozone Retrieval)

  • 최수환;박주선;김재환;백강현
    • 대기
    • /
    • 제25권1호
    • /
    • pp.117-127
    • /
    • 2015
  • The presences of clouds significantly influence the accuracy of ozone retrievals from satellite measurements. This study focuses on the influence of clouds on Ozone Monitoring instrument (OMI) ozone profile retrieval based on an optimal estimation. There are two operational OMI cloud products; OMCLDO2, based on absorption in $O_2-O_2$ at 477 nm, and OMCLDRR, based on filling in Fraunhofer lines by rotational Raman scattering (RRS) at 350 nm. Firstly, we characterize differences between $O_2-O_2$ and RRS effective cloud pressures using MODIS cloud optical thickness (COT), and then compare ozone profile retrievals with different cloud input data. $O_2-O_2$ cloud pressures are significantly smaller than RRS by ~200 hPa in thin clouds, which corresponds to either low COT or cloud fraction (CF). On the other hand, the effect of Optical centroid pressure (OCP) on ozone retrievals becomes significant at high CF. Tropospheric ozone retrievals could differ by up to ${\pm}10$ DU with the different cloud inputs. The layer column ozone below 300 hPa shows the cloud-induced ozone retrieval error of more than 20%. Finally, OMI total ozone is validated with respect to Brewer ground-based total ozone. A better agreement is observed when $O_2-O_2$ cloud data are used in OMI ozone profile retrieval algorithm. This is distinctly observed at low OCP and high CF.

오존을 산화제로 사용한 다양한 고급산화 공정에 의한 TNT Red Water의 처리 (Treatment of TNT Red Water by the Ozone-based Advanced Oxidation Processes)

  • 전정철;권태옥;문일식
    • Korean Chemical Engineering Research
    • /
    • 제45권3호
    • /
    • pp.298-303
    • /
    • 2007
  • 오존을 중심으로 한 다양한 조합의 고급산화 공정(advanced oxidation process: AOP)을 이용하여 2,4,6-trinitrotoluene (TNT) 제조 공정에서 발생되는 난분해성 폐수인 red water(RW)의 유기물 및 색도 제거 연구를 수행하였다. 적용된 고급산화 공정은 $O_3$, $UV/O_3$, $UV/O_3/H_2O_2$, $UV/O_3/H_2O_2/Fe^{2+}$ 공정이었으며, 유기물 및 색도 제거 효과는 $O_3 < $UV/O_3/H_2O_2/Fe^{2+}$ 공정의 순서로 나타났다. $UV/O_3/H_2O_2/Fe^{2+}$ 공정에서 최적 분해조건은 오존 유량 0.053 g/min, $H_2O_2$ 주입농도 10 mM, $FeSO_4$ 주입농도 0.1 mM로 나타났으며, 90 min 동안 유기물 및 색도 제거율은 각각 96, 100%로 나타났다. tert-butyl alcohol(t-buOH)을 이용한 수산화 라디칼(hydroxyl radical : ${\cdot}OH$)의 scavenging 실험을 통해 오존에 UV, $H_2O_2$, $FeSO_4$를 산화제로 조합함으로써 수산화 라디칼의 발생량을 더욱 증가시키고 유기물 제거율을 효과적으로 향상시킬 수 있음을 확인하였다.