• Title/Summary/Keyword: $O_2$ gas

Search Result 4,992, Processing Time 0.032 seconds

Optimization of Supported Pt Catalysts for Single Stage Water Gas Shift Reaction (일단 WGS반응용 백금 담지 촉매 최적화)

  • Kim, Ki-Sun;Jeong, Dae-Woon;Koo, Kee Young;Yoon, Wang Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.156.2-156.2
    • /
    • 2011
  • 본 연구에서는 일단 수성가스전이반응 (Single stage water gas shift reaction)을 위해 높은 활성을 가진 백금 담지 촉매를 함침법 (Incipient wetness impregnation method)으로 제조하여 높은 공간 속도 (Gas hourly space velocity) $45,515h^{-1}$에서 담체에 따른 촉매 활성을 평가하였다. 담체는 $CeO_2$, $ZrO_2$, MgO, MgO-$Al_2O_3$ (MgO = 30 wt%) 그리고 $Al_2O_3$를 사용하였으며 백금의 담지량은 1 wt%로 고정하였다. BET, XRD, TPR, CO-chemisorption 분석을 통하여 담체의 구조적 특성이 촉매 활성에 미치는 영향에 대하여 조사하였다.

  • PDF

Effect of Hydrogen Treatment on Electrical Properties of Hafnium Oxide for Gate Dielectric Application

  • Park, Kyu-Jeong;Shin, Woong-Chul;Yoon, Soon-Gil
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.2
    • /
    • pp.95-102
    • /
    • 2001
  • Hafnium oxide thin films for gate dielectric were deposited at $300^{\circ}C$ on p-type Si (100) substrates by plasma enhanced chemical vapor deposition (PECVD) and annealed in $O_2$ and $N_2$ ambient at various temperatures. The effect of hydrogen treatment in 4% $H_2$ at $350^{\circ}C$ for 30 min on the electrical properties of $HfO_2$for gate dielectric was investigated. The flat-band voltage shifts of $HfO_2$capacitors annealed in $O_2$ambient are larger than those in $N_2$ambient because samples annealed in high oxygen partial pressure produces the effective negative charges in films. The oxygen loss in $HfO_2$films was expected in forming gas annealed samples and decreased the excessive oxygen contents in films as-deposited and annealed in $O_2$ or $N_2$ambient. The CET of films after hydrogen forming gas anneal almost did not vary compared with that before hydrogen gas anneal. Hysteresis of $HfO_2$films abruptly decreased by hydrogen forming gas anneal because hysteresis in C-V characteristics depends on the bulk effect rather than $HfO_2$/Si interface. The lower trap densities of films annealed in $O_2$ambient than those in $N_2$were due to the composition of interfacial layer becoming closer to $SiO_2$with increasing oxygen partial pressure. Hydrogen forming gas anneal at $350^{\circ}C$ for samples annealed at various temperatures in $O_2$and $N_2$ambient plays critical role in decreasing interface trap densities at the Si/$SiO_2$ interface. However, effect of forming gas anneal was almost disappeared for samples annealed at high temperature (about $800^{\circ}C$) in $O_2$ or $N_2$ambient.

  • PDF

Study on the Performance Improvement of ZnO-based NO2 Gas Sensor through MgZnO and MgO (ZnO 기반 NO2 가스센서의 MgZnO와 MgO을 통한 성능 향상에 대한 연구)

  • So-Young, Bak;Se-Hyeong, Lee;Chan-Yeong, Park;Dongki, Baek;Moonsuk, Yi
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.455-460
    • /
    • 2022
  • Brush-like ZnO hierarchical nanostructures decorated with MgxZn1-xO (x = 0.1, 0.2, 0.3, 0.4, and 0.5) were fabricated and examined for application to a gas sensor. They were synthesized using vapor phase growth (VPG) on indium tin oxide (ITO) substrates. To generate electronic accumulation at ZnO surface, MgZnO nanoparticles were prepared by sol-gel method, and the ratio of Mg and Zn was adjusted to optimize the device for NO2 gas detection. As the electrons in the accumulation layer generated by the heterojunction reacted faster and more frequently with the gas, the sensitivity and speed improved. When tested as sensing materials for gas sensors at 100 ppm NO2 at 300℃, these MgZnO decorated ZnO nanostructures exhibited an improvement from 165 to 514 times compared to pristine ZnO. The response and recovery time of the MgZnO decorated ZnO samples were shorter than those of the pristine ZnO. Various analyzing techniques, including field-emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD) were employed to confirm the growth morphology, atomic composition, and crystalline information of the samples, respectively.

The characteristics of Al-doped ZnO films deposited with RF magnetron sputtering system in various H2/(Ar+H2) gas ratios

  • Kim, Jwayeon;Han, Jungsu;Park, Kyeongsoon
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.407-410
    • /
    • 2012
  • The properties of Al-doped ZnO (AZO) films were investigated as a function of H2/(Ar + H2) gas ratio using an AZO (2 wt% Al2O3) ceramic target in a radio frequency (RF) magnetron sputtering system. The deposition process was done at 200 ℃ and in 2 × 10-2Torr working pressure and with various ratios of H2/(Ar + H2) gas. During the AZO film deposition process, partial H2 gas affected the AZO film characteristics. The electron resistivity (~ 9.21 × 10-4 Ωcm) was lowest and mobility (~17.8 ㎠/Vs) was highest in AZO films when the H2/(Ar + H2) gas ratio was 2.5%. When the H2/(Ar + H2) gas ratio was increased above 2.5%, the electron resistivity increased and mobility decreased with increasing H2/(Ar + H2) gas ratio in AZO films. The carrier concentration increased with increasing H2/(Ar + H2) gas ratio from 0% to 7.5%. This phenomenon was explained by reaction of hydrogen and oxygen and additional formation of oxygen vacancy. The average optical transmission in the visible light wavelength region over 90% and an orientation of the deposition was [002] orientation for AZO films grown with all H2/(Ar + H2) gas ratios.

H2S Micro Gas Sensor Based on a SnO2-CuO Multi-layer Thin Film

  • Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.27-30
    • /
    • 2012
  • This paper proposes a micro gas sensor for measuring $H_2S$ gas. This is based on a $SnO_2$-CuO multi-layer thin film. The sensor has a silicon diaphragm, micro heater, and sensing layers. The micro heater is embedded in the sensing layer in order to increase the temperature to an operating temperature. The $SnO_2$-CuO multi layer film is prepared by the alternating deposition method and thermal oxidation which uses an electron beam evaporator and a thermal furnace. To determine the effect of the number of layers, five sets of films are prepared, each with different number of layers. The sensitivities are measured by applying $H_2S$ gas. It has a concentration of 1 ppm at an operating temperature of $270^{\circ}C$. At the same total thickness, the sensitivity of the sensor with multi sensing layers was improved, compared to the sensor with one sensing layer. The sensitivity of the sensor with five layers to 1 ppm of $H_2S$ gas is approximately 68%. This is approximately 12% more than that of a sensor with one-layer.

Response Characteristics of Thick Film Sensors Using Nano ZnO:Ni for Hydrocarbon Gas (나노 ZnO:Ni를 이용한 후막 가스센서의 탄화수소계 가스에 대한 감응특성)

  • Yoon, So-Jin;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.23 no.4
    • /
    • pp.211-214
    • /
    • 2013
  • The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for $CH_4$ and $CH_3CH_2CH_3$ gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with $NH_4OH$. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to $CH_4$ gas and $CH_3CH_2CH_3$ gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.

Electrical and Optical Properties of ZnO : Al Films Prepared by the DC Magnetron Sputtering System (직류 Magnetron Sputter 법으로 제막된 ZnO : Al 박막의 전기광학 특성)

  • 김의수;유세웅;유병석;이정훈
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.7
    • /
    • pp.799-808
    • /
    • 1995
  • Transparent conductive films of aluminium doped zinc oxide (AZO) have been prepared by using the DC magnetron sputtering with the ZnO : Al (Al2O3 2 wt%) oxide target oriented to c-axis. Electrical and optical properties depended upon the O2/Ar gas ratio. The optical transmittance and sheet resistance of the AZO coated glass was 60~65% and 75Ω/$\square$, respectively at the O2/Ar gas ratio of 0. With the increase of the oxygen partial pressure to 2.0$\times$10-2, they were increased to the values of 81% and 1kΩ/$\square$, respectively. The films with the resistivities of 1.2~1.4$\times$10-3 Ω.cm, mobilities of 11~13 $\textrm{cm}^2$/V.sec and carrier concentrations of 3.5$\times$1020~4.0$\times$1020/㎤ were produced at the optimum O2/Ar gas ratio, which was 0.5$\times$10-2~1.0$\times$10-2. According to XRD analysis, the films have only one peak corresponding to the (002) plane, which indicates that there is a strong preferred orientation of the films. The grain size of ZnO films were calculated to 200~320 $\AA$, which was increased with the O2/Ar gas ratio and Ar gas flowrate.

  • PDF

Gas Sensing Characteristics of $SnO_{2}$ added with $TiO_{2},\;Pd,\;Pt$ and in for Trimethylamine Gas (Trimethylamine Gas 측정을 위한 $TiO_{2},\;Pd,\;Pt$ 및 In이 첨가된 $SnO_{2}$가스 센서의 특성)

  • Lee, Chang-Seop;Jung, Soon-Boon;Jun, Jae-Mok;Lee, In-Sun;Lee, Hyeong-Rag;Park, Young-Ho;Choi, Sung-Woo
    • Journal of the Korean Institute of Gas
    • /
    • v.11 no.1 s.34
    • /
    • pp.29-33
    • /
    • 2007
  • This study investigates the use of $TiO_{2},\;Pd,\;Pt$, and In which greatly improves a sensitivity to trimethylamine gas. The metal-$SnO_{2}$ thick films were prepared by screen-printing method onto $Al_{2}O_{3}$ substrates with platinum electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of detecting gas concentration. This was then used to detect trimethylamine, dimethylamine, and ammonia vapours within the concentration range of 100-1000ppm. The gas sensing properties of metal-$SnO_{2}$ mixed thick films depended on the content and variety of metal. It was found that sensitivity and selectivity of the films dopped with 1 wt% Pd and 10 wt% $TiO_{2}$ for trimethylamin gas showed the best result at $250^{\circ}C$.

  • PDF

The Study on the Etching Characteristics of Pt Thin Film by $O_2$ Addition to $_2$/Ar Gas Plasma (Cl$_2$/Ar 가스 플라즈마에 $O_2$ 첨가에 따른 Pt 식각 특성 연구)

  • 김창일;권광호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.29-35
    • /
    • 1999
  • Inductively coupled plsama etching of platinum thin film was studied using $O_2$ addition to $Cl_2$/Ar gas plasma. In this study, Pt etching mechanism was investigated with Ar/$Cl_2$ /$O_2$ gas plasma by using XPS and QMS. Ion current density was measured with Ar/$Cl_2$ /$O_2$ gas plasma by using single Langmuir probe. It was confirmed by using QMS and single Langmuir probe that Cl and Ar species rapidly decreased and ion current density was also decreased with increasing $O_2$ gas ratios. These results implied that the decrease of Pt etch rate is due to the decrease of reactive species ans ion current density with increasing $O_2$ gas mixing ratios. A maximum etch rate of 150nm/min and the oxide selectivity of 2.5 were obtained at Ar/$Cl_2$ /$O_2$ flow rate of 50 seem, RF power of 600 W, dc bias voltage of 125 V, and the total pressure of 10 mTorr.

  • PDF

Fabrication of H2 Gas Sensor Based on ZnO Nanarod Arrays by a Sonochemical Method

  • Lee, Mi-Sun;Oh, Eu-Gene;Jeong, Soo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3735-3737
    • /
    • 2011
  • We report a simple method for fabricating ZnO gas sensors via a sonochemical route and their $H_2$ gas sensing properties. Vertically aligned ZnO nanorod arrays as a sensing material were synthesized on a Pt-electrode patterned alumina substrate under ambient conditions. The advantage of the proposed method is a high speed of processing. The gas sensor based on ZnO nanorod arrays with large specific surface area showed a high response to $H_2$ and a detection limit of 70 ppm at $250^{\circ}C$. Also, their response and recovery time were relatively short and a complete regeneration was observed. A mechanism for sensing $H_2$ gas on the surface of ZnO nanorods is proposed.