• Title/Summary/Keyword: $O_2$ gas

Search Result 5,008, Processing Time 0.046 seconds

Effect of Anodic Gas Compositions on the Overpotential in a Molten Carbonate Fuel Cell

  • Lee C.G.;Kim D.H.;Hong S.W.;Park S.H.;Lim H.C.
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • Anodic overpotential has been investigated with gas composition changes in a $100cm^2$ class molten carbonate fuel cell. The overpotential was measured with steady state polarization, reactant gas addition (RA), inert gas step addition (ISA), and electrochemical impedance spectroscopy (EIS) methods at different anodic inlet gas compositions, i.e., $H_2:CO_2:H_2O=0.69:0.17:0.14\;atm\;and\;H_2:CO_2:H_2O=0.33:0.33:0.33\;atm$, at a fixed $H_2$ flow rate. The results demonstrate that the anodic overpotential decreases with increasing $CO_2\;and\;H_2O$ flow rates, indicating the anode reaction is a gas-phase mass-transfer control process of the reactant species, $H_2,\;CO_2,\;and\;H_2O$. It was also found that the mass-transfer resistance due to the $H_2$ species slightly increases at higher $CO_2\;and\;H_2O$ flow rates. EIS showed reduction of the lower frequency semi-circle with increasing $H_2O\;and\;CO_2$ flow rate without affecting the high frequency semi-circle.

Characteristics and Preparation of Gas Sensor Using Nano Indium Coated ZnO:In (나노 Indium을 부착한 ZnO:In 가스센서의 제작 및 특성)

  • Jung, Jong-Hun;Yu, Yun-Sik;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.9
    • /
    • pp.486-490
    • /
    • 2011
  • Nano-indium-coated ZnO:In thick films were prepared by a hydrothermal method. ZnO:In gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties of the gas sensors were investigated for hydrocarbon gas. The effects of the indium concentration of the ZnO:In gas sensors on the structural and morphological properties were investigated by X-ray diffraction and scanning electron microscopy. XRD patterns revealed that the ZnO:In with wurtzite structure was grown with (1 0 0), (0 0 2), and (1 0 1) peaks. The quantity of In coating on the ZnO surface increased with increasing In concentration. The sensitivity of the ZnO:In sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of the ZnO:In sensors was observed at the In 6 wt%. The response and recovery times of the 6 wt% indiumcoated ZnO:In gas sensors were 19 s and 12 s, respectively.

Sterilization Test of Microorganisms of Slow-released ClO2 Gas Gel-Pack (서방출형 이산화염소 가스 젤팩의 미생물 살균 시험)

  • Lee, Kyung-Haeng;Kim, Hong-Gil
    • The Korean Journal of Food And Nutrition
    • /
    • v.31 no.2
    • /
    • pp.308-312
    • /
    • 2018
  • Even though chlorine dioxide ($ClO_2$) is utilized in a pre-treatment due to its effective sterilizing activity for microorganisms and its safety for food, it has a limitation in maintaining freshness of the food product. In this study, a low-concentration $ClO_2$ gas was produced in a packaging form of air-permeable gel pack so that it could be released continuously over several days. The amount of $ClO_2$ gas emission and microbial inactivation effect against foodborne pathogens were measured during the release of $ClO_2$ gas. As a result of measuring the change of color in order to confirm whether the chlorine dioxide gas was eluted in the form of a sustained release, the yellowness was significantly higher at higher gel pack concentration and higher value during storage periods. The slow-released $ClO_2$ gel-pack showed clear inactivation effect against Escherichia coli and Staphylococcus aureus with 99.9% inactivation efficiency. As a result of measuring the sterilization effect of Listeria monocytogenes by the concentration of chlorine dioxide gas, the sterilization effect was increased as the concentration was increased. Therefore, the slow-released $ClO_2$ gel-pack is feasible to apply for industry usages.

A study on the gas reaction mechanism in catalyst/$SnO_2$ gas sensor (촉매/$SnO_2$ 가스 센서의 반응 구조에 관한 연구)

  • 이재홍;김창교;김진걸;조남인;김덕준
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.276-283
    • /
    • 1997
  • A dry impregnation method was used for preparing pellet type Pt/$SnO_2$ gas sensor. The crystal structure, direction of the crystal, crystal size and microstructure between the catalyst and the support ($SnO_2$) were characterized with electron diffraction analysis, transmission electron microscopy, scanning electron microscopy. The characterization indicates that when Pt/$SnO_2$ sample is calcined at $400^{\circ}C$, the Cl content associated with the Pt phase diminishes and the part of Pt is moved into $SnO_2$ support. This results in the enhancement of gas sensitivity. After the reactor with a Pt/$SnO_2$ sample was run with a flow rate of 30 sccm (a mixture of 0.5% $H_2$ in $_N2$) for a while, the resistance of $SnO_2$ was saturated, but the $SnO_2$ kept absorbing $H_2$ gas. This indicates that the surface state was saturated. For the 14 ppm $H_2$ gas, the sensitivity of Pt/$SnO_2$ devices was about 81% at an operating temperature of $300^{\circ}C$.

  • PDF

Gas-sensing Characteristics of $WO_3$-$SnO_2$Thin-film Sensors ($WO_3$-$SnO_2$박막 센서의 가스감지특성)

  • 유광수;김태송
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1180-1186
    • /
    • 2001
  • W $O_3$-Sn $O_2$thin film sensors with approximately 1${\mu}{\textrm}{m}$ in thickness were fabricated by using a high-vacuum resistance-heating evaporator, were annealed at 50$0^{\circ}C$ for 4 hours in air, and then their crystallinities and surface microstructures were analyzed. As results of gas-sensing characteristics to oxidizing gas, N $O_2$, and reducing gas, CO, of 100 ppm, the highest gas sensitivities (S= $R_{gas}$/ $R_{air}$) were the W $O_3$thin-film sensor measured at 25$0^{\circ}C$ for N $O_2$(S≒1000) and the Sn $O_2$thin-film sensor measured at 15$0^{\circ}C$ to 25$0^{\circ}C$ range for CO (S≒0.25), respectively.ely.

  • PDF

A Study on the Catalytic Decomposition of Nitric Oxide over Cu-ZSM5 Catalysts (Cu-ZSM5 촉매상에서 일산화질소 분해반응에 대한 연구)

  • Park, Dal-Ryung;Park, Hyung-Sang;Oh, Young-Sam;Cho, Won-Ihl;Paek, Young-Soon;Pang, Hyo-Sun
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.26-33
    • /
    • 1997
  • Highly crystalline Cu-ZSM5 was prepared without using organic templates. Several ion exchange treatments between Na$\^$+/ and Cu$\^$2+/ brought about excess loading of copper ions on the ZSM5 zeolite and the resultant zeolite was active for the decomposition of NO. This indicates that the copper ions excessively loaded on the ZSM5 zeolite are effective for the NO decomposition. When oxygen was added to a reactants, the conversion of NO decreased. NO, O$_2$TPD experiments explained that the active sites for NO decomposition and the adsorption sites of O$_2$, were the same. O$_2$, at the surface of ZSM5 zeolite was desorbed incompletely after pretreatment at 500$^{\circ}C$, and CU-ZSM5 pretreated with H$_2$at 500$^{\circ}C$ showed promoted activity at the start of reaction. Thus, it seems clear that O$_2$, adsorbed ai the surface of catalyst inhibits the catalytic activity.

  • PDF

The Insulation Evaluation of N2:O2 Mixture Gas

  • Lee, Sang-Ho;Choi, Eun-Hyeok;Lim, Dong-Young;Park, Kwang-Seo;Kim, Se-Dong;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.41-46
    • /
    • 2010
  • With the improvement of industrial society, high quality electrical energy, simplification of operation and maintenance, and ensuring reliability are being required. Also we request an urgent change from $SF_6$ gas to an environment-friendly gas insulation material. In this paper, the experiments of breakdown characteristics by pressure and gap change of $N_2/O_2$ mixture gas through a GIS (Gas Insulated Switchgear) model were described. This paper reviews basic data of the surface discharge characteristics for Teflon resin in not only pure $N_2$, $N_2:O_2$ mixture gas as being focused on environmentally-friendly insulating gas, but also $SF_6$. Also, insulation characteristics by breakdown voltage and surface discharge voltage of $N_2:O_2$ mixture gas in the experimental chamber were studied.

Hydrogen sulfide gas sensing mechanism study of ZnO nanostructure and improvement of sensing property by surface modification

  • Kim, Jae-Hyeon;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.450-450
    • /
    • 2011
  • This study reports the hydrogen sulfide gas sensing properties of ZnO nanorods bundle and the investigation of gas sensing mechanism. Also the improvement of sensing properties was also studied through the application of ZnO heterstructured nanorods. The 1-Dimensional ZnO nano-structure was synthesized by hydrothermal method and ZnO nano-heterostructures were prepared by sonochemical reaction. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) spectra confirmed a well-crystalline ZnO of hexagonal structure. The gas response of ZnO nanorods bundle sensor increased with increasing temperature, which is thought to be due to chemical reaction of nanorods with gas molecules. Through analysis of X-ray photoelectron spectroscopy (XPS), the sensing mechanism of ZnO nanorods bundle sensor was explained by well-known surface reaction between ZnO surface atoms and hydrogen sulfide. However at high sensing temperature, chemical conversion of ZnO nanorods becomes a dominant sensing mechanism in current system. In order to improve the gas sensing properties, simple type of gas sensor was fabricated with ZnO nano-heterostructures, which were prepared by deposition of CuO, Au on the ZnO nanorods bundle. These heteronanostructures show higher gas response and higher current level than ZnO nanorods bundle. The gas sensing mechanism of the heteronanostructure can be explained by the chemical conversion of sensing material through the reaction with target gas.

  • PDF

Hydrogen Gas Sensor Performance of a p-CuO/n-ZnO Thin-film Heterojunction (p-CuO/n-ZnO 이종접합 박막 구조의 수소 가스 특성 평가)

  • Yang, Yijun;Maeng, Bohee;Jung, Dong Geon;Lee, Junyeop;Kim, Yeongsam;An, Hee Kyung;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.337-342
    • /
    • 2022
  • Hydrogen (H2) gas is widely preferred for use as a renewable energy source owing to its characteristics such as environmental friendliness and a high energy density. However, H2 can easily reverse or explode due to minor external factors. Therefore, H2 gas monitoring is crucial, especially when the H2 concentration is close to the lower explosive limit. In this study, metal oxide materials and their p-n heterojunctions were synthesized by a hydrothermal-assisted dip-coating method. The synthesized thin films were used as sensing materials for H2 gas. When the H2 concentration was varied, all metal oxide materials exhibited different gas sensitivities. The performance of the metal oxide gas sensor was analyzed to identify parameters that could improve the performance, such as the choice of the metal oxide material, effect of the p-n heterojunctions, and operating temperature conditions of the gas sensor. The experimental results demonstrated that a CuO/ZnO gas sensor with a p-n heterojunction exhibited a high sensitivity and fast response time (134.9% and 8 s, respectively) to 5% H2 gas at an operating temperature of 300℃.

Effect of Crystal Structures on the Sensing Properties of Nanophase $SnO_2$ Gas Sensor (나노상 $SnO_2$ 가스센서에서 센서검지특성에 미치는 결정구조의 영향)

  • 안재평;김선호;박종구;허무영
    • Journal of Powder Materials
    • /
    • v.8 no.2
    • /
    • pp.98-103
    • /
    • 2001
  • Metallic tin powder with diameter less than 50 nm was synthesized by inert gas condensation method and subsequently oxidized to tin oxide ($SnO_2$) along the two heat-treatment routes. The $SnO_2$ powder of single phase with a tetragonal structure was obtained by the heat-treatment route with intermediate annealing step-wise oxidation, whereas the $SnO_2$ powder with mixture of orthorhombic and tetragonal phases was obtained by the heat-treatment route without intermediate annealing (direct oxidation). $SnO_2$ gas sensors fabricated from the nano-phase $SnO_2$ powders were investigated by structural observations as well as measurement of electrical resistance. The $SnO_2$ gas sensors fabricated from the mixed-phase powder exhibited much lower sensitivity against $H_2$ gas than those fabricated from the powder of tetragonal phase. Reduced sensitivity of gas sensors with the new orthorhombic phase was attributed to detrimental effects of phase boundaries between orthorhombic and tetragonal phases and many twin boundaries on the charge mobility.

  • PDF