• 제목/요약/키워드: $O_2$ Sensor

검색결과 1,271건 처리시간 0.022초

High Sensitivity and Selectivity of Array Gas Sensor through Glancing Angle Deposition Method

  • Kim, Gwang Su;Song, Young Geun;Kang, Chong yun
    • 센서학회지
    • /
    • 제29권6호
    • /
    • pp.407-411
    • /
    • 2020
  • In this study, we propose an array-type gas sensor with high selectivity and response using multiple oxide semiconductors. The sensor array was composed of SnO2 and In2O3, and the detection characteristics were improved by using Pt, Au, and Pd catalysts. All samples were deposited directly on the Pt interdigitated electrode (IDE) through the e-beam evaporator glancing angle deposition (GAD) method. They grew in the form of well-aligned nanorods at off-axis angles. The prepared SnO2 and In2O3 nanorod samples were exposed to CH3COCH3, C7H8, and NO2 gases in a 300℃ dry condition. Au-decorated SnO2, Au-decorated In2O3, and Pd-decorated In2O3 exhibited high selectivity for CH3COCH3, C7H8, and NO2, respectively. They demonstrated a high detection limit of the sub ppb level computationally. In addition, measurements from each sensor were executed in the 40% relative humidity condition. Although there was a slight reduction in detection response, high selectivity and distinguishable detection characteristics were confirmed.

$Ga_2O_3$ 첨가에 따른 $SiO_2-PbO-K_2O-Al_2O_ 3$계 적외선 센서용 glass fiber의 특성 (Properties of glass fiber by adding $Ga_2O_3$ in the $SiO_2-PbO-K_2O-Al_2O_ 3$ system for infrared sensor)

  • 이명원;윤상하;강원호
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권10호
    • /
    • pp.1047-1052
    • /
    • 1996
  • In this study, the thermal and optical proper-ties of multicomponent oxide glass fiber for IR sensor by adding heavy metal oxide Ga$_{2}$O$_{3}$ were investigated. The fiber samples were made by rod-in tube method. The optical loss of fiber was measured in 0.3-1.8/M wavelength region. As Ga$_{2}$O$_{3}$ increased up to 12wt%, the transition and softening temperature of bulk glass were increased from 495.deg. C to 564.deg. C and from 548.deg. C to 612.deg. C respectively. Whereas the thermal expansion coefficient was decreased from 102 to 88.2*10$^{-7}$ /.deg. C. The refractive index was increased from 1.621 to 1.662, and IR cut-off wavelength was enlarged from 4.64.mu.m to 5.22.mu.m. The optical loss of fiber was decreased and more remarkably decreased in 1.146.mu.m-1.8.mu.m wavelength region.

  • PDF

Structural and Electrical Properties of WOx Thin Films Deposited by Direct Current Reactive Sputtering for NOx Gas Sensor

  • Yoon, Young-Soo;Kim, Tae-Song;Park, Won-Kook
    • 한국세라믹학회지
    • /
    • 제41권2호
    • /
    • pp.97-101
    • /
    • 2004
  • W $O_{x}$-based semiconductor type thin film gas sensor was fabricated for the detection of N $O_{x}$ by reactive d.c. sputtering method. The relative oxidation state of the deposited W $O_{x}$ films was approximately compared by the calculation of the difference of the binding energy between Ols to W4 $f_{7}$2/ core level XPS spectra in the standard W $O_3$ powder of known composition. As the annealing temperature increased from 500 to 80$0^{\circ}C$, relative oxygen contents and grain size of the sputtered films were gradually increased. As the results of sensitivity ( $R_{gas}$/ $R_{air}$) measurements for the 5 ppm N $O_2$ gas, the sensitivity was 110 and the sensor showed recovery time as fast as 200 s. The other sensor properties were examined in terms of surface microstructure, annealing temperature, and relative oxygen contents. These results indicated that the W $O_3$ thin film with well controlled structure is a good candidate for monitoring and controlling of automobile exhaust.haust.t.t.t.

SpO2 기반 휴대형 생체 신호 모니터링 시스템 개발 (Development of a Portable SpO2-based Biosignal Monitoring System)

  • 이형봉;박성욱;정태윤
    • 대한임베디드공학회논문지
    • /
    • 제8권5호
    • /
    • pp.273-283
    • /
    • 2013
  • The traditional medical equipments are devices used by medical professionals but not used in public environment. Common people, however, require light-weight medical devices to make healthcare for themselves nowadays. Those medical devices are used to monitor personal health status such as blood pulse, blood pressure, diabetes. Also, some of them are operated in mobile environment called u-healthcare. This paper implements a portable healthcare system composed of $SpO_2$(Saturation of Partial Pressure Oxygen) sensors and a gateway for detecting hypoxemia during people's leasure activity such as climbing or hiking. The $SpO_2$ sensor is designed as watch style to support dynamic exercise and the gateway is designed as necklace style to support the elderly. The result of a performance evaluation shows that the performance of the $SpO_2$ sensor using reflection technology is not lower than that of a clairvoyant styled $SpO_2$ sensor.

Thick-film ammonia gas sensor with high sensitivity and excellent selectivity

  • Lee, Kyuchung;Ryu, Kwang-Ryul;Hur, Chang-Wu
    • Journal of information and communication convergence engineering
    • /
    • 제2권1호
    • /
    • pp.22-25
    • /
    • 2004
  • A highly sensitive ammonia gas sensor using thick-film technology has been fabricated and examined. The sensing material of the gas sensor is FeOx-$WO_{3}-SnO_{2}$ oxide semiconductor. The sensor exhibits resistance increase upon exposure to low concentration of ammonia gas. The resistance of the sensor is decreased, on the other hand, for exposure to reducing gases such as ethyl alcohol, methane, propane and carbon monoxide. A novel method for detecting ammonia gas quite selectively utilizing a sensor array consisting of an ammonia gas sensor and a compensation element has been proposed and developed. The compensation element is a Pt-doped $WO_{3}-SnO_{2}$gas sensor which shows opposite direction of resistance change in comparison with the ammonia gas sensor upon exposure to ammonia gas. Excellent selectivity has been achieved using the sensor array having two sensing elements.

용액적하법으로 제조된 WO3 첨가 SnO2 박막의 가스감응 특성 (Gas Sensing Characteristics of WO3-Doped SnO2 Thin Films Prepared by Solution Deposition Method)

  • 최중기;조평석;이종흔
    • 한국재료학회지
    • /
    • 제18권4호
    • /
    • pp.193-198
    • /
    • 2008
  • $WO_3$-doped $SnO_2$ thin films were prepared in a solution-deposition method and their gas-sensing characteristics were investigated. The doping of $WO_3$ to $SnO_2$ increased the response ($R_a/R_g,\;R_a$: resistance in air, $R_g$: resistance in gas) to $H_2$ substantially. Moreover, the $R_a/R_g$ value of 10 ppm CO increased to 5.65, whereas that of $NO_2$ did not change by a significant amount. The enhanced response to $H_2$ and the selective detection of CO in the presence of $NO_2$ were explained in relation to the change in the surface reaction by the addition of $WO_3$. The $WO_3$-doped $SnO_2$ sensor can be used with the application of a $H_2$ sensor for vehicles that utilize fuel cells and as an air quality sensor to detect CO-containing exhaust gases emitted from gasoline engines.

생선의 신선도 측정을 위한 반도체 센서 (Semiconductor Sensor for Detecting Freshness of Sea Foods)

  • 박성현;권태하
    • 수산해양기술연구
    • /
    • 제29권4호
    • /
    • pp.272-278
    • /
    • 1993
  • The trimethylamine-sensing characteristics of ZnO based thin film semiconductors and the sensitivity enhancement by squttering conditions have been investigated to develop a new type sensor for detecting fish freshness. The sensor fabricated with a 300nm of ZnO thin film with 4 wt% Al sub(2) O sub(3) and 1 wt% TiO sub(2) exhibited the highest sensitivity of 155 at 30$0^{\circ}C$ of working temperature and to the 240 ppm TMA gas. Deposition of ZnO thin film using a RF magnetron sputter was carried out at a pressure of 10 super(-2) Torr in pure oxygen gas with an RF power of 100W. The sensor exhibited a large response to the actual gases produced by a mackerel at an early stage of decomposition.

  • PDF

Characterization of ZnO Nanorods and SnO2-CuO Thin Film for CO Gas Sensing

  • Lim, Jae-Hwan;Ryu, Jee-Youl;Moon, Hyung-Sin;Kim, Sung-Eun;Choi, Woo-Chang
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권6호
    • /
    • pp.305-309
    • /
    • 2012
  • In this study, ZnO nanorods and $SnO_2$-CuO heterogeneous oxide were grown on membrane-type gas sensor platforms and the sensing characteristics for carbon monoxide (CO) were studied. Diaphragm-type gas sensor platforms with built-in Pt micro-heaters were made using a conventional bulk micromachining method. ZnO nanorods were grown from ZnO seed layers using the hydrothermal method, and the average diameter and length of the nanorods were adjusted by changing the concentration of the precursor. Thereafter, $SnO_2$-CuO heterogeneous oxide thin films were grown from evaporated Sn and Cu thin films. The average diameters of the ZnO nanorods obtained by changing the concentration of the precursor were between 30 and 200 nm and the ZnO nanorods showed a sensitivity value of 21% at a working temperature of $350^{\circ}C$ and a carbon monoxide concentration of 100 ppm. The $SnO_2$-CuO heterogeneous oxide thin films showed a sensitivity value of 18% at a working temperature of $200^{\circ}C$ and a carbon monoxide concentration of 100 ppm.

산화물 반도체 박막 가스센서 어레이의 제조 및 수율 개선 (Fabrication and yield improvement of oxide semiconductor thin film gas sensor array)

  • 이규정;류광렬;허창우
    • 한국정보통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.315-322
    • /
    • 2002
  • 반도체 제조공정과 미세가공 기술을 이용하여 30$0^{\circ}C$의 동작온도에서 약 60㎽의 전력소모를 갖는 산화물 반도체 박막 가스센서 어레이를 제조하였다. 멤브레인의 우수한 열적 절연은 0.1$\mu\textrm{m}$ 두께의 Si$_3$N$_4$와 1$\mu\textrm{m}$ 두께의 PSG의 이중 층에 의한 것으로, 각각 LPCVD(저압화학 기상증착)와 APCVD(대기압 화학 기상증착)에 의해 제조되었다. 센서 어레이의 4가지 산화물 반도체 박막 감지물질로는 1wt.%Pd가 도핑된 SnO$_2$, 6wt.% $Al_2$O$_3$가 도핑된 ZnO, WO$_3$, ZnO를 이용하였으며, 제조된 초소형 산화물 반도체 박막 가스센서 어레이는 여러 가지 가스의 노출시 유용한 저항 변화를 나타내었고 감도는 감지 물질에 강하게 의존함을 알 수 있었다. 센서 소자의 공정 수율을 증진시키기 위하여 히터 부위를 함몰하는 공정 방법을 취하였으며, 그 결과 월등한 수율 개선을 도모할 수 있었다.

수열합성에 의한 3차원 구조의 NiCo2O4 제조 및 글루코스 센서로서의 응용 (3-Dimensional NiCo2O4 nanostructure prepared by hydrothermal process and its application for glucose sensor)

  • 장규봉;민성욱
    • 한국결정성장학회지
    • /
    • 제31권2호
    • /
    • pp.78-83
    • /
    • 2021
  • 본 연구에서는 수열반응법을 이용하여 3차원 구조를 갖는 NiCo2O4 입자를 합성했다. 수열합성에서 반응조건 [Ni]/[Co] 비율, 반응시간과 열처리온도를 달리하여 입자의 조성과 형상을 조절했다. 최적의 조건을 결정하고자 XRD, SEM을 통해 입자를 분석하였으며, [Ni]/[Co] 1:2 비율, 반응시간 12시간, 열처리 400℃ 4시간 조건에서 3차원 구조를 갖는 단일상의 NiCo2O4가 합성하였다. 합성된 NiCo2O4 나노구조체의 글루코스 센서 특성평가 결과, 글루코스에 대해 높은 민감도와 탁월한 선택성을 나타냈다. 본 연구를 통해 합성한 NiCo2O4 나노구조체는 향후 비효소 기반 전기화학적 글루코스 센서로 널리 응용될 수 있을 것으로 기대된다.