• Title/Summary/Keyword: $O_2$ Sensor

Search Result 1,272, Processing Time 0.028 seconds

Gas Sensing Characteristics of Nano Sized SnO2 Sensors for Various Co and Ni Concentration (Co, Ni 농도 변화에 따른 나노 SnO2 센서의 감응 특성)

  • Lee, Ji-Young;Yu, Yoon-Sic;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.546-549
    • /
    • 2011
  • Nano-sized $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a test box as a function of the detection gas. The nano-sized $SnO_2$ thick film sensors were treated in a $N_2$ atmosphere. The structural properties of the nano $SnO_2$with a rutile structure according to XRD showed a (110) dominant $SnO_2$ peak. The particle size of $SnO_2$:Ni nano powders at Ni 8 wt% was about 45 nm, and the $SnO_2$ particles were found to contain many pores according to the SEM analysis. The sensitivity of the nano $SnO_2$-based sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors doped with 8 wt% Ni. The response time of the $SnO_2$:Ni gas sensors was 10 seconds and recovery time was 15 seconds for the $CH_4$ and $CH_3CH_2CH_3$ gases.

Electrospun Non-Directional Zinc Oxide Nanofibers as Nitrogen Monoxide Gas Sensor (전기방사법에 의해 합성된 무방향성 산화아연 나노섬유의 일산화질소 가스 감지 특성)

  • Kim, Ok-Kil;Kim, Hyojin;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.609-614
    • /
    • 2012
  • We report on the NO gas sensing properties of non-directional ZnO nanofibers synthesized using a typical electrospinning technique. These non-directional ZnO nanofibers were electrospun on an $SiO_2$/Si substrate from a solution containing poly vinyl alcohol (PVA) and zinc nitrate hexahydrate dissolved in distilled water. Calcination processing of the ZnO/PVA composite nanofibers resulted in a random network of polycrystalline ZnO nanofibers of 50 nm to 100 nm in diameter. The diameter of the nanofibers was found to depend primarily on the solution viscosity; a proper viscosity was maintained by adding PVA to fabricate uniform ZnO nanofibers. Microstructural measurements using scanning electron microscopy revealed that our synthesized ZnO nanofibers after calcination had coarser surface morphology than those before calcination, indicating that the calcination processing was sufficient to remove organic contents. From the gas sensing response measurements for various NO gas concentrations in dry air at several working temperatures, it was found that gas sensors based on electrospun ZnO nanofibers showed quite good responses, exhibiting a maximum sensitivity to NO gas in dry air at an operating temperature of $200^{\circ}C$. In particular, the non-directional electrospun ZnO nanofiber gas sensors were found to have a good NO gas detection limit of sub-ppm levels in dry air. These results illustrate that non-directional electrospun ZnO nanofibers are promising for use in low-cost, high-performance practical NO gas sensors.

생물공정 모니터링을 위한 Fiber Optic 생물센서 개발

  • Son, Ok-Jae;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.819-822
    • /
    • 2001
  • In this study a fiber optic biosensor has been developed to on-line monitor the concentrations of oxygen and glucose. The oxygen concentrations in solution and gas phase monitored by the fiber optic sensor has been compared with those by a dissolved oxygen electrode and an IR-type $O_2$ analyzer. The fiber optic glucose sensor has been made by immobilizing glucose oxidase on the tip of the optic fiber and used to on-line monitor the concentration of glucose in a fermentation process.

  • PDF

Thermoelectric properties of La(1-x)MxCoO3(M=Sr, Ca;x=0, 0.1) ceramics for thermal sensors

  • Kang, Min-Gyu;Cho, Kwang-Hwan;Kang, Chong-Yun;Kim, Jin-Sang;Kim, Sang-Sig;Yoon, Seok-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.234-238
    • /
    • 2009
  • We have investigated the effects of dopant on the thermoelectric properties that $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics fabricated by the conventional solid state reaction method. The Seebeck coefficient of $La_{(1-x)}M_xCoO_3$(M=Sr, Ca;x=0, 0.1) bulk ceramics was measured at wide temperature range from 300 K to 673 K. The thermoelectric properties(Seebeck coefficient and electrical resistivity) depend strongly on the kinds of dopants. Sr and Ca dopant decrease the Seebeck coefficient. Density of sintered $La_{0.9}Sr_{0.1}CoO_3$ ceramic at 1523 K was 7.12 $g/cm^2$ and Seebeck coefficient was 35 ${\mu}V/K$ at 663 K. However, the electrical resistivity of the Sr doped sample was low and stable.

Pyroelectric property of $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ ceramics for pyroelectric sensor application (초전센서 응용을 위한 $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ 세라믹계 초전특성)

  • 황학인;정종만;박준식
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.4
    • /
    • pp.667-672
    • /
    • 1998
  • Pyroelectric properties of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ ceramics prepared by the columbite precursor method have been investigated as a function of the sintering temperature in the range of $1000^{\circ}C$ to $1250^{\circ}C$. The $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ ceramics show typical relaxor ferroelectric behavior. The optimum condition for obtaining samples with high densities and improved pyroelectric properties occur at a sintering temperature of $1250^{\circ}C$ and sintering times of 2 hours. The $Pb(Mg_{1/3}Nb_{2/3}O_3-PbTiO_3$ ceramics show the possibility for pyroelectric sensors with pyrostat.

  • PDF

Planar-Type Micro Gas Sensor (평면형 마이크로 가스센서)

  • 이상윤;정완영;이덕동
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.101-104
    • /
    • 1998
  • A new planar-type micro gas sensor was designed and fabricated on silicon substrate and the operating characteristics of the sensor were investigated. The thin sensitive film of the sensor was fabricated by spin-coating of the SnO$_2$ sol solution which was synthesized by hydrothermal method. The spin-coating method for preparation of sensing layer was adopted to improve the long-term stability of the fabricated sensing film instead of physical methods such as rf sputtering and thermal evaporation. The fabricated microsensor showed a fairly good sensing performance for CO gas in air at 250$^{\circ}C$ The sensitivity(S=Ra/Rg) was shown to be about 5 to 2000ppm CO with heating power of 50mW.

  • PDF

Analyses Thermal Stresses for Microaccelerometer Sensors using SOI Wafer(I) (SOI웨이퍼를 이용한 마이크로가속도계 센서의 열응력해석(I))

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.36-42
    • /
    • 2001
  • This paper deals with finite element analyses of residual stresses causing popping up which are induced in micromachining processes of a microaccelerometer sensors. The paddle of the micro accelerometer sensor is designed symmetric with respect to the direction of the beam. After heating the tunnel gap up to 100 degree and get it through the cooling process and the additional beam up to 80 degree and get it through the cooling process. We learn the thermal internal stresses of each shape and compare the results with each other, after heating the tunnel gap up to 400 degree during the Pt deposition process. Finally we find the optimal shape which is able to minimize the internal stresses of microaccelerometer sensor. We want to seek after the real cause of this pop up phenomenon and diminish this by change manufacturing processes of microaccelerometer sensor by electrostatic force.

  • PDF

PID and adaptive learning control for engine air-fuel control system (PID 및 적응학습 제어기법을 이용한 자동화 엔진의 공기-연료비 제어시스템 연구)

  • Lee, Deong-Kyoo;Choi, Don;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.658-662
    • /
    • 1990
  • In the air-fuel control of automotive engine to improve its efficiency, fuel economy and less emissions, conventional control methods using $O_{2}$ sensor or the lean air-fuel ratio sensor provide only open control in rich conditions. Control with a wide range air-fuel sensor makes it possible to employ closed loop control for all engine conditions including rich combustion. With a wide range A/F sensor and A/F transfer functions, a PID control system is constructed which employs an learning scheme. A/F controller is designed which enables to improve the ability of its compensation for sensors and actuators, and its control operation is evaluated by computer simulation.

  • PDF

Development of HC Sensor & System for Vehicles Exhaust Gas Check (HC 센서를 이용한 자동차 배기가스 감지 연구)

  • Chon, Young-Kap;Cho, Kook-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1011-1014
    • /
    • 1999
  • An on-board monitoring system for an automobile emission gas has a test chamber remote from the automobile's engine exhaust gas stream: apparatus for supplying the chamber with sampled exhaust gases. A single hydrocarbon sensor exposed to the exhaust gas in the chamber to render a signal responsive to the hydrocarbon. The conductive ions in emission gas was checked by the HC sensor in test chamber. A preferred application includes hydrocarbons in an automotive exhaust gas stream by exposing a transition porous alumina($Al_{2}O_{3}$) ceramic based sensor to the same exhaust gas stream. By combining the electrical signal, a measure of hydrocarbons can be provided.

  • PDF

Statistical Characterization Fabricated Charge-up Damage Sensor

  • Samukawa Seiji;Hong, Sang-Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.87-90
    • /
    • 2005
  • $SiO_2$ via-hole etching with a high aspect ratio is a key process in fabricating ULSI devices; however, accumulated charge during plasma etching can cause etching stop, micro-loading effects, and charge build-up damage. To alleviate this concern, charge-up damage sensor was fabricated for the ultimate goal of real-time monitoring of accumulated charge. As an effort to reach the ultimate goal, fabricated sensor was used for electrical potential measurements of via holes between two poly-Si electrodes and roughly characterized under various plasma conditions using statistical design of experiment (DOE). The successful identification of potential difference under various plasma conditions not only supports the evidence of potential charge-up damage, but also leads the direction of future study.