• Title/Summary/Keyword: $O_2$ Sensor

Search Result 1,272, Processing Time 0.028 seconds

Metal-organic frameworks-driven ZnO-functionalized carbon nanotube fiber for NO2 sensor

  • Woo, Sungyoon;Jo, Mingyeong;Lee, Joon-Seok;Choi, Seung-Ho;Lee, Sungju;Jeong, Hyeon Su;Choi, Seon-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.369-375
    • /
    • 2021
  • In this study, heterogeneous ZnO/CNTF composites were developed to improve the NO2-sensing response, facilitated by the self-heating property. Highly conductive and mechanically stable CNTFs were prepared by a wet-spinning process assisted by the liquid crystal (LC) behavior of CNTs. Metal-organic frameworks (MOFs) of ZIF-8 were precipitated on the surface of the CNTF (ZIF-8/CNTF) via one-pot synthesis in solution. The subsequent calcination process resulted in the formation of the ZnO/CNTF composites. The calcination temperatures were controlled at 400, 500, and 600 ℃ in an N2 atmosphere to confirm the evolution of the microstructures and NO2-sensing properties. Gas sensor characterization was performed at 100 ℃ by applying a DC voltage to induce Joule heating through the CNTF. The results revealed that the ZnO/CNTF composite after calcination at 500 ℃ (ZnO/CNTF-500) exhibited an improved response (Rair/Rgas = 1.086) toward 20 ppm NO2 as compared to the pristine CNTF (Rair/Rgas = 1.063). Selective NO2-sensing properties were demonstrated with negligible responses toward interfering gas species such as H2S, NH3, CO, and toluene. Our approach for the synthesis of MOF-driven ZnO/CNTF composites can provide a new strategy for the fabrication of wearable gas sensors integrated with textile materials.

Finite Element Analysis of Capacitive pressure sensor with Touch mode for improving non-linearity (비선형성의 개선을 위한 Capacitive pressure sensor의 Touch mode 방식에 대한 유한요소 해석)

  • Kim, Do-Hyung;O, Jea-Geun;Choi, Bum-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2087-2089
    • /
    • 2004
  • Capacitive pressure sensor는 Piezo type sensor에 비해 온도의 영향이 적어 공업계측, 전기용품 등 그 용도가 다양하여 폭넓게 사용되어지고 있지만, 측정값의 비선형성이 존재하여 측정값에 대한 신뢰도가 떨어지는 단점이 있다. 본 연구에서는 기존 capacitive pressure sensor의 비선형적 output을 개선하기 위한 방법으로 touch mode capacitive pressure sensor를 제안하였다. 또한, 실제 Device제작에 앞서 FEM 해석을 수행하였다. 2mm X 2mm 크기의 diaphragm, $25{\mu}m$의 두께, $20{\mu}m$의 gap을 갖는 Sensor를 Simulation하였으며 설계 변수를 추출하여 각각의 설계변수에 대한 해석을 실시하였다. 그 결과 15.2psi${\sim}$31psi의 영역에서 8.58pF${\sim}$54.31pF의 capacitance가 선형적으로 나타나는 sensor임을 확인하였다.

  • PDF

Gas sensing properties of polyacrylonitrile/metal oxide nanofibrous mat prepared by electrospinning

  • Lee, Deuk-Yong;Cho, Jung-Eun;Kim, Ye-Na;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.281-288
    • /
    • 2008
  • Polyacrylonitrile(PAN)/metal oxide(MO) nanocomposite mats with a thickness of 0.12 mm were electrospun by adding 0 to 10 wt% of MO nanoparticles ($Fe_2O_3$, ZnO, $SnO_2$, $Sb_2O_3-SnO_2$) into PAN. Pt electrode was patterned on $Al_2O_3$ substrate by DC sputtering and then the PAN(/MO) mats on the Pt patterned $Al_2O_3$ were electrically wired to investigate the $CO_2$ gas sensing properties. As the MO content rose, the fiber diameter decreased due to the presence of lumps caused by the presence of MOs in the fiber. The PAN/2% ZnO mat revealed a faster response time of 93 s and a relatively short recovery of 54 s with a ${\Delta}R$ of 0.031 M${\Omega}$ at a $CO_2$ concentration of 200 ppm. The difference in sensitivity was not observed significantly for the PAN/MO fiber mats in the $CO_2$ concentration range of 100 to 500 ppm. It can be concluded that an appropriate amount of MO nanoparticles in the PAN backbone leads to improvement of the $CO_2$ gas sensing properties.

A NOx gas sensor based on thennopile and embedded tin oxide catalyst (Thermopile과 삽입된 $SnO_2$ catalyst를 이용한 NOx 센서)

  • Lee, Chung-Il;Yoon, Seung-Il;Kim, Yong-Jun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1829-1832
    • /
    • 2008
  • This paper reports a novel gas sensing method by using a thermoelectric device, thermopile in this case, with an embedded tin oxide catalyst. By using a thin catalyst film, the response time and recovery time were remarkably improved. The fabricated gas sensor was characterized through detecting NOx gas with various concentrations.

  • PDF

H$_2$ Gas Sensing Properties of Pt/MoO$_3$ Gas Sensor (Pt/MoO$_3$가스센서의 수소 감지 특성)

  • 최용일;김창교;김진걸;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.118-122
    • /
    • 1996
  • 1wt% Pt/MoO$_3$ gas sensors for detecting H$_2$ gas were fabricated by the pressed pellet method and surface structures of Pt/MoO$_2$ were investigated by TEM and XRD. It was observed that as the calcination temperature is increased, the overlayers of MoO$_3$ on Pt are produced, but the Cl content in PtCl$\_$x/ are decreased. H$_2$ gas sensing properties in N$_2$ ambient and in air ambient were investigated, respectively, and Pt/MoO$_3$ had high sensitivity at low working temp ; 7.8% at 50$^{\circ}C$, 97.7% at 100$^{\circ}C$, 97.1% at 150$^{\circ}C$ when the specimens are treated at 400$^{\circ}C$, and 99.6% at 150$^{\circ}C$ when they are treated at 200$^{\circ}C$. It shows the development of a low-power type sensor is possible by using Pt/MoO$_3$.

  • PDF

Micromachined ZnO Piezoelectric Pressure Sensor and Pyroelectric Infrared Detector in GaAs

  • Park, Jun-Rim;Park, Pyung
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.239-244
    • /
    • 1998
  • Piezoelectric pressure sensors and pyroelectric infrared detectors based on ZnO thin film have been integrated with GaAs metal-semiconductor field effect transistor (MESFET) amplifiers. Surface micromachining techniques have been applied in a GaAs MESFET process to form both microsensors and electronic circuits. The on-chip integration of microsensors such as pressure sensors and infrared detectors with GaAs integrated circuits is attractive because of the higher operating temperature up to 200 oC for GaAs devices compared to 125 oC for silicon devices and radiation hardness for infrared imaging applications. The microsensors incorporate a 1${\mu}$m-thick sputtered ZnO capacitor supported by a 2${\mu}$m-thick aluminum membrane formed on a semi-insulating GaAs substrate. The piezoelectric pressure sensor of an area 80${\times}$80 ${\mu}$m2 designed for use as a miniature microphone exhibits 2.99${\mu}$V/${\mu}$ bar sensitivity at 400Hz. The voltage responsivity and the detectivity of a single infrared detector of an area 80${\times}$80 $\mu\textrm{m}$2 is 700 V/W and 6${\times}$108cm$.$ Hz/W at 10Hz respectively, and the time constant of the sensor with the amplifying circuit is 53 ms. Circuits using 4${\mu}$m-gate GaAs MESFETs are fabricated in planar, direct ion-implanted process. The measured transconductance of a 4${\mu}$m-gate GaAs MESFET is 25.6 mS/mm and 12.4 mS/mm at 27 oC and 200oC, respectively. A differential amplifier whose voltage gain in 33.7 dB using 4${\mu}$m gate GaAs MESFETs is fabricated for high selectivity to the physical variable being sensed.

  • PDF

Determination of $Cu^{2+}$ by Lophine Chemiluminescence

  • Kim Young-Sun;Karim Mohammad Mainul;Lee Sang-Hak;Choi Kyoung-Hye;Choi Jong-Ha;Lee Sung-Ho
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.137-141
    • /
    • 2005
  • The chemiluminescence reaction of lophine with $H_2O_2$ in alkaline solution has been investigated for use in determination of $Cu^{2+}$ ions. The observed chemiluminescence intensity is found to be a function of the concentration of $Cu^{2+}$. Under the optimum reagent concentrations such as $4{\times}10^{-4}M$ lophine, 0.8 M KOH, 0.2M $H_2O_2,{\lambda}_{em}$, 533nm, the linear range and the detection limit were found to be 0.048ug/ml-48.32ug/ml (R=0.99897) and 0.005ulg/ml respectively. Relative standard deviation for five determinations of 24.16ug/ml $Cu^{2+}$ is 2.35%. The interference from other species was investigated. The proposed method was applied to the determination of $Cu^{2+}$ in different water samples.

  • PDF

$NO_2$ Gas Sensor Utilizing Pt-$WO_3-Si_3N_4-SiO_2$-Si-Al Capacitor (Pt-$WO_3-Si_3N_4-SiO_2$-Si-Al 캐패시터를 이용한 $NO_2$ 가스 센서)

  • 김창교;이주헌;이영환;유광수;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.105-108
    • /
    • 1998
  • Pt-WO$_3$-Si$_3$N$_4$-SiO$_2$-Si-Al 캐패시터를 이용한 NO$_2$ 가스 센서를 개발하였다. 표준 실리콘 MNOS구조에 촉매 게이트로 Pt와 가스 흡착층으로 WO$_3$를 이용함으로서 전통적인 세라믹 가스 센서보다 낮은 온도에서 NO$_2$ 가스를 감지할 수 있었다. 은도 변화와 NO$_2$ 가스 농도의 변화에 따라서 디바이스의 NO$_2$ 가스 감도를 조사하였다. Pt-WO$_3$ 계면에서 NO$_2$ 이온농도의 변화에 기초로 한 가스 감지 모델을 제시하였다. 제시된 가스 감지 모델을 계면에서의 가스 반응 속도론에 의하여 분석함으로서 확인하였다.

  • PDF

Thick Film Gas Sensor Based on PCB by Using Nano Particles (나노 입자를 이용한 PCB 기반 후막 가스 센서)

  • Park, Sung-Ho;Lee, Chung-Il;Song, Soon-Ho;Kim, Yong-Jun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.59-63
    • /
    • 2007
  • This paper presented a low-cost thick film gas sensor module, which was based on simple PCB (Printed Circuit Board) process. The proposed sensor module included a $NO_2/H_2$ gas sensor, a relative humidity sensor, and a heating element. The $NO_2/H_2$ gas and relative humidity sensors were realized by screen-printing $SnO_2,\;BaTiO_3$ nano-powders on IDTS (Interdigital Transducer) of a PCB substrate, respectively. At first 1% $H_2$ gas flowed into the sensor chamber. After 4 min, air filled the chamber while $H_2$ gas flow stopped. This experiment was performed repeatedly. The Identical procedure was used for the $NO_2$ detection. The result for sensing $H_2$ gas showed the increase of voltage from 0.8V to 3.5V due to the conductance increase and its reaction response time by hydrogen flow was 65 sec. $NO_2$ sensing results showed 2.7 V voltage drop due to the conductance decrease and its response time was 3 sec through a voltage monitoring.

  • PDF