• Title/Summary/Keyword: $OH^*$ chemiluminescence

Search Result 98, Processing Time 0.023 seconds

Environmental effects on plant calmodulin system (식물 칼모듈린 체계에 미치는 환경적 요인의 영향)

  • Yang, Moon-Sik;Oh, Suk-Heung
    • Applied Biological Chemistry
    • /
    • v.39 no.1
    • /
    • pp.25-31
    • /
    • 1996
  • Transgenic tobacco plants expressing calmodulin derivative($lys{\rightarrow}ile$ 115 calmodulin) and hygromycin resistance genes or hygromycin resistance gene alone(control) were generated by Agrobacterium-mediated DNA transfer. Seeds obtained from the transgenic plants($F_o$) were tested for resistance to hygromycin and the expected 3 : 1 ratio was observed. The expression of calmodulin derivative in the tobacco plants was identified by a combined method of Western blot and Chemiluminescence. The effects of surface sterilizers on the germiation of seeds from transgenic tobacco plants were tested in Murashige and Skoog agar medium. Seeds obtained from transgenic tobacoo plants expressing the calmodulin derivative showed no fungi contamination with normal germination by treating with sterilized water alone or sodium hypochlorite(2% effective chlorine). In contrast, seeds from the control transgenic tobacco plants showed severe contamination with fungi by treating with sterilized water alone and showed no contamination with normal germination by treating with sodium hypochlorite(2% chlorine). The effects of calcium concentration on the germination of seeds from transgenic tobacco plants were tested in Murashige and Skoog agar medium. Seeds obtained from transgenic tobacco plants expressing the calmodulin derivative showed better germination frequency than that of the control transgenic tobacco seeds in the medium containing 30 mM $CaCl_2$. The data raise the possibility that the expression of calmodulin derivative gene in tobacco plants could increase adaptability of the seeds to environmental stresses.

  • PDF

Experimental Study on the Effect of Flame Surface Area Fluctuation on the Heat Release Fluctuation in a Premixed Bunsen Flame (예혼합 분젠 화염에서의 화염 표면적 변동이 열발생 변동에 미치는 영향에 관한 실험적 연구)

  • Park, Jang-Hee;Lee, Dae-Keun;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.2
    • /
    • pp.197-202
    • /
    • 2010
  • A combustion chamber with a branch tube was built to investigate the characteristics of a spontaneous oscillating laminar premixed Bunsen flame. The flame behavior was observed, and the relation between the flame surface area and heat release rate was inspected. The equivalence ratio and mean velocity were fixed at 1.1 and 1.75 m/s, respectively. The amplitude of the pressure fluctuation in the combustion chamber was changed and the flame behavior was affected when the length ratio between the branch tube and combustion chamber (L:R) was varied. The $OH^*$, $CH^*$, and flame chemiluminescence had similar behavior qualitatively. There was linearity between the flame surface area and heat release rate.

An Experimental Study of Acoustic Excitation Effect on Blowoff Mechanism for Premixed Flame (예혼합 화염 날림 메커니즘에 음향 가진이 미치는 영향에 대한 실험적 연구)

  • Shin, Jaeik;Jeong, Chanyeong;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1004-1012
    • /
    • 2014
  • In this study, blowoff was investigated in a ducted combustor with the bluff body when acoustic excitation was forced. To observe the flame structure, OH radical chemiluminescence was used and the image was analyzed by using POD (Proper Orthogonal Decomposition) algorithm. Natural gas mainly composed of methane was used as fuel. Blowoff occurred when the equivalence ratio was reduced. Equivalence ratio causing blowoff was measured by changing air flow rate, excitation frequency and sound pressure. Blowoff equivalence ratio was varied depending on the experimental conditions. Vortex frequency behind the bluff body and resonance effect in combustor are the main factors that affect the blowoff equivalence ratios with the excitation.

Studies on the Simultaneous Determination of VNA and TSNA by GC - TEA (Gas chromatography-Thermal Energy Analyzer에 의한 휘발성 니트로소아민과 담배 특유의 니트로소아민들의 동시 분석연구)

  • Rhee, Mun-Su;Ji, Sang-Woon;Park, Yang-Su
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.15 no.2
    • /
    • pp.174-184
    • /
    • 1993
  • This is to investigate the methodology for the simultaneous determination of Wk, mk and TSNA using gas chromatography(GC) in combination with chemiluminescence detector, thermal energy analyzer(TEA) . The simultaneous analysis has been estimated by evaluating tobacco. The TEA was linked to GC equipped with non -polar SPB -5 fused silica capillary column which was introduced into the ceramic pyrolysis tube by the point of 16cm from the end of TEA. Quantification was carried out by internal standardization with WDPA after calibration of retention times and response factors with authentic nitrosoamines. It was demonstrated that WDPA was most preferable as internal standard for the simultaneous analysis. The recoveries of the internal standard were in the range of 83∼96% . Nitrosoamines in this method were detected with determination limit of 0.1ng and was made by a straight line in calibration curve by TEA response. The suitability of nitrosoamines extraction in tobacco leaf was investigated. It was most suitable to extract nitrosoamines from tobacco leaves with 0.01 M NaOH within a period of 8 hours. Thimerosal as an antibacterial agent was added to NaOH solution to prevent artifactual formation. The fractionation and the purification of nitrosoamines form alkaline extracts were conveniently performed using Extrelut multilayer column and dichloromethane. Reproducible and reliable results were obtained for the determination of nitrosamines in a relatively short time compared to previous known method. TSNA contents in burley were about 4 times higher as those in the fluecured tobacco.

  • PDF

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method (화학발광법에 의한 수용액 중의 선택적 수은(II) 이온 정량)

  • Kim, Kyung-Min;Jang, Taek-Gyun;Kim, Young-Ho;Oh, Sang-Huyb;Lee, Sang-Hak
    • Analytical Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.243-248
    • /
    • 2011
  • A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.

Application of Chemiluminescence Enzyme Immunoassay Method to Collect in vivo Matured Oocyte in Dog Cloning (개 복제 시 체내 성숙 난자 회수를 위한 화학발광효소면역분석기법의 적용)

  • Kim, Min-Jung;Oh, Hyun-Ju;Kim, Geon-A;Jo, Young-Kwang;Choi, Jin;Lee, Byeong-Chun
    • Journal of Veterinary Clinics
    • /
    • v.31 no.4
    • /
    • pp.267-271
    • /
    • 2014
  • Accurate determination of in vivo oocyte maturation is particularly critical for dog cloning compared to other assisted reproductive technologies because oocytes in metaphase II stage have to be recovered in order to undergo somatic cell nuclear transfer right after its recovery. The aim of present study was to evaluate the reliability and to set a reference range of a chemiluminescence enzyme immunoassay (CLEIA) compared to radioimmunoassay (RIA) method to retrieve in vivo matured oocytes. Serum progesterone concentration during proestrus and estrus was analyzed by RIA and CLEIA to determine ovulation day (Day 0). On Day 3, in vivo oocytes were recovered surgically and evaluated microscopically maturation status after staining nucleus with bisbenzimidazole dye. Mean progesterone concentration by CLEIA ($7.64{\pm}0.06ng/ml$) was significantly higher than by RIA ($6.46{\pm}0.04ng/ml$, P < 0.0001). It was not different between CLEIA ($10.01{\pm}0.34ng/ml$) and RIA values ($7.91{\pm}0.14ng/ml$, P < 0.05) on Day 0, but significantly higher CLEIA level on Day -1 and Day 1 ($6.41{\pm}0.15$ and $14.25{\pm}0.44ng/ml$) was assessed compared to RIA ($4.95{\pm}0.10$ and $11.29{\pm}0.34ng/ml$). However, with both methods, progesterone level was significantly increased from Day -1 to Day 2. To determine oocyte maturation with CLEIA method, a wider and higher reference range has to be considered.

Comparative Study of Flame Spread Behaviors in One Dimensional Droplet Array Under Supercritical Pressures of Normal Gravity and Microgravity (통상 및 미소 중력의 초임계 압력하에서 일차원 액적 배열의 화염 퍼짐 거동의 비교 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.140-148
    • /
    • 1999
  • Experiments on flame spread in an one-dimensional droplet array up to supercritical pressures of fuel droplet have been conducted In normal gravity and microgravity. Evaporating process around unburnt droplet is observed through high-speed Schlieren and direct visualizations in detail, and flame spread rate is measured using high speed chemiluminescence images of OH radical. Flame spread behaviors are categorized into three: flame spread is continuous at low pressures and is regularly intermittent up to the critical pressure of fuel. flame spread is irregularly intermittent and zig-zag at supercritical pressures of fuel. At atmospheric pressure, the limit droplet spacing and the droplet spacing of maximum flame spread rate in microgravity are larger than those in normal gravity. In microgravity, the flame spread rate with the increase of ambient pressure decreases initially, takes a minimum, and then decreases after taking maximum. This is so because the flame spread time is determined by competing effects between the increased transfer time of thermal boundary layer due to reduced flame diameter and the reduced ignition delay time in terms of the increase of ambient pressure. Consequently, it is found that flame spread behaviors in microgravity are considerably different from those in normal gravity due to the absence of natural convection.

An Experimental Study on Flame Spread in an One-Dimensional Droplet Array (일차원 액적 배열하에서 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • Experimental investigations on flame spread in droplet arrays have been conducted under supercritical ambient pressures of fuel droplet. Flame spread rates are measured for n-Decane droplet of diameters of 0.75 and 1.0mm, using high speed images of OH chemiluminescence up to 3.0MPa. The pattern of flame spread is categorized into two: a continuous mode and an intermittent one. There exists a limit droplet spacing, above which flame spread does not occur. Flame spread rate with the decrease of droplet spacing increases and then decreases after takin& a maximum. It is also seen that there exists a limit ambient pressure, above which flame spread does not occur. Flame spread rate decreases monotonically with the increase of ambient pressure. Exceptionally, In the case of a small droplet spacing, flame spread with the increase of ambient pressure is extended to supercritical pressures of fuel droplet. This is caused by enhanced vaporization with the increase of ambient pressure. Consequently, in flame spread with droplet droplet spacing, the relative position of flame to droplet spacing plays an important role. The monotonic decrease with ambient pressure is mainly related to the reduction of flame radius in subcritical pressures and the extension to supercritical pressures of flame spread is caused by the reduction of ignition time of unburnt droplet due to the enhanced vaporization at supercritical pressures.

Characteristics of Non-premixed Synthetic Natural Gas-Air Flame with Variation in Fuel Compositions (합성천연가스의 조성변화에 따른 확산화염 연소특성)

  • Oh, Jeongseog;Dong, Sangeun;Yang, Jebok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.829-836
    • /
    • 2013
  • The combustion characteristics with variations in synthetic natural gas (SNG) compositions were studied in a lab-scale combustor. The objective of the current study is to investigate the flame stabilization, flame structure, and spectrometry in a non-premixed SNG flame with varying fuel compositions. For the analysis of light emission in SNG flames, we used a spectrometer. As experimental conditions, the fuel jet velocity at the nozzle exit $u_F$ was varied from 5 to 40 m/s and the coaxial air velocity $u_A$ was varies from 0 to 0.43 m/s. The experiments showed that the flame stability increased with the hydrogen component in SNG.

Hydrogen Enrichment Effects on NOx Formation in Pre-mixed Methane Flame (수소 첨가가 예혼합 메탄 화염의 NOx 생성에 미치는 영향)

  • Kim, H.S.;Ahn, K.Y.;Gupta, A.K.
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.1
    • /
    • pp.75-84
    • /
    • 2007
  • The effects of hydrogen enrichment to methane on NOx formation have been investigated with swirl stabilized pre-mixed hydrogen enriched methane flame in a laboratory-scale pre-mixed combustor(nominally of 5,000 kcal/hr). The hydrogen enriched methane fuel and air were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame stability was examined for different amount of hydrogen addition to the methane fuel, different combustion air flow rates and swirl strengths by comparing equivalence ratio at the lean flame limit. The hydrogen addition effects and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using gas analyzers, and OH chemiluminescence techniques to provide information about species concentration of emission gases and flowfield. The results of NOx and CO emissions were compared with a diffusion flame type combustor. The results show that the lean stability limit depends on the amount of hydrogen addition and the swirl intensity. The lean stability limit is extended by hydrogen addition, and is reduced for higher swirl intensity at lower equivalence ratio. The addition of hydrogen increases the NOx emission, however, this effect can be reduced by increasing either the excess air or swirl intensity. The NOx emission of hydrogen enriched methane premixed flame was lower than the corresponding diffusion flame under the fuel lean condition.