• Title/Summary/Keyword: $Ni_2O_3$

Search Result 1,942, Processing Time 0.03 seconds

Enhanced Electrochemical Property of Surface Modified Li[Co1/3Ni1/3Mn1/3]O2 by ZrFx Coating

  • Yun, Su-Hyun;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.355-359
    • /
    • 2010
  • A $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ cathode was modified by applying a $ZrF_x$ coating. The surface-modified cathodes were characterized by XRD, SEM, EDS, TEM techniques. XRD patterns of $ZrF_x$-coated $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ revealed that the coating did not affect the crystal structure of the parent powder. SEM and TEM images showed that $ZrF_x$ nano-particles were formed as a coating layer, and EDS data confirmed that $ZrF_x$ distributed uniformly on the surface the powder. Capacity retention of coated samples at high C rates was superior to that of pristine sample. However, as the coating concentration increases beyond the optimum concentration, the rate capability was deteriorated. Whereas, as the increase of coating concentration to 2.0 wt %, the cyclic performances of the electrodes under the severe conditions (high cut-off voltage, 4.8 V, and high measurement temperature, $55^{\circ}C$) were improved considerably.

Cathode Properties of Sm-Sr-(Co,Fe,Ni)-O System with Perovskite and Spinel Structures for Solid Oxide Fuel Cell (고체산화물 연료전지의 페로브스카이트와 스피넬 구조를 갖는 Sm-Sr-(Co,Fe,Ni)-O 시스템의 공기극 특성)

  • Baek, Seung-Wook;Kim, Jung-Hyun;Baek, Seung-Whan;Bae, Joong-Myeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.133-136
    • /
    • 2007
  • Perovskite-structured samarium strontium cobaltite (SSC), which is mixed ionic electronic conductor (MIEC), is considered as a promising cathode material for intermediate temperature-operating solid oxide fuel cell (SOFC) due to its high electrocatalytic property. Cathode material containing cobalt (Co) is unstable at high temperature and has a relatively high thermal expansion property. In this paper, Sm-Sr-(Co,Fe,Ni)-O system with perovskite and spinel structures was investigated in terms of electrochemical property and thermal expansion property, respectively. Area specific resistance (ASR) was measured by ac impedance spectroscopy to investigate the electrochemical property of cathode, and thermal expansion coefficient (TEC) was measured by using dilatometer. Micro structure of cathode was observed by scanning electron microscopy. Perovskite-structured $Sm_{0.5}Sr_{0.5}CoO_{3-\delta}$ showed the ASR of $0.87{\Omega}/cm^{2}$, and $Sm_{0.5}Sr_{0.5}NiO_{3-\delta}$, which actually has a spinel structure, showed the lowest TEC value of $13.3{\times}10^{-6}/K$.

  • PDF

Preparationan dCrystal Structure of [Ni($L^2$)($H_2O$)]Cl$\cdot$$H_2O$ ($L^2$: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18}$,$0^{7.12}$]docosane-N-acetic acid) ([Ni($L^2$)($H_2O$)]Cl$\cdot$$H_2O$ ($L^2$: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18}$,$0^{7.12}$docosane-N-acetic acid) 착물의 합성 및 결정구조)

  • Park, Ki-Yonng;Park, Young-Soo;Kim, Jin-Gyu;Suh, Il-Hwan;Kim, Chang-Suk
    • Korean Journal of Crystallography
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 1999
  • The complex [Ni(L2)(H2O)]Cl·H2O (1) (L2=3,14-dimethyl-2,6,13,17-tetraazartricyclo [14,4,01.18,07.12]docosane-N-acetic acid) has been synthesized and characterized by X-ray crystallography. 1 crystallizes in the triclinic system, space group P, with a=11.274(1), b=13.851(1), c=17.159(6) , α=90.24(2), β=101.10(2), γ=92.11(1)o V=2682.5(11) 3, Z=4, R1=0.042 and wR2=0.111 for 9432 observed reflections with [I>2σ(I)]. The central nicke(II) ion is six-coordinated octahedral geometry with bonds to the four amine nitrogen atoms the carboxylic oxygen atom of the macrocyclic ligand and to the water molecule occupying a position trans to the pendant arm.

  • PDF

The Wear Resistance of Electroless Nickel and Electroless Composite(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond) Coating Layers (무전해 니켈도금과 무전해복합도금(Ni-P-X, X: SiC, $Al_2$O$_3$, Diamond)의 내마모성 비교)

  • Kim, M.;Chang, D. Y.;Jeong, Y. S.;Ro, B. H.;Lee, K. H.
    • Journal of Surface Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.193-206
    • /
    • 1994
  • A wear behavior of electroless (Ni-P-X, X: SiC, $Al_2O_3$, Diamond) composite coating layers, formed under various conditions on commerical grade low carbon steel, has been investigated using Taber abrasion tester and scanning electron microscope. Several factors, which are type of particles, co-deposited content, particle size, distribution of particles and heat-treatment, influenced the wear resistance. The wear resistance of the composited coating layers after heat-treatment at $400^{\circ}C$ for 1 hr was increased 70 times with diamond, 15 times with SiC and 8 times with $Al_2O_3$, compared with the electroless nickel plating layer without heat-treatment.

  • PDF

The Effects of $Y_{2}O_{3}$ and $Ga_{2}O_{3}$ Addtives on the Microstructure and Piezoelectric Properties of PNN-PZ-PT Ceramics (PNN-PZ-PT 세라믹스의 미세구조 및 암전특성에 대한 $Y_{2}O_{3}$$Ga_{2}O_{3}$의 첨가효과)

  • Kwon, Jeong-Ho;Choi, Hae-Yun;Jeong, Yeon-Hak;Kim, Il-Won;Song, Jae-Sung;Jeong, Soon-Jong;Lee, Jae-Shin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.334-337
    • /
    • 2002
  • In this study, the microstructure, dielectric and piezoelectric properties of $0.15Pb(Ni_{1/3}Nb_{2/3})O_3-0.85(PbZr_{0.5}Ti_{0.5})O_3$(0.15PNN-0.85PZT) ceramics having compositions near the morphotropic phase boundary(MPB) was investigated with respect to the variation of $Y_2O_3$ and $Ga_2O_3$ addition amount. The dielectric properties increased and piezoelectric properties decreased with increasing the amount of $Ga_2O_3$. The solubility limit of $Y_2O_3$ is 0.5mol% in this system. The electro-mechanical coupling factor$(K_p)$ and dielectric constant(${\varepsilon}_r$) were 58.6% and 1755 when the amount of $Y_2O_3$ are 0.5mol%.

  • PDF

Effect of Calcination Temperatures on the Structure and Electrochemical Characterization of Li(Ni0.5Mn0.3Co0.2)O2 as Cathode Material by Supercritical Hydrothermal Synthesis Method (초임계 수열법으로 합성한 Li(Ni0.5Mn0.3Co0.2)O2 양극 활물질의 소성 온도영향에 따른 구조 및 전기화학적 특성)

  • Choo, Soyeon;Beom, YunGyeong;Kim, Sungsu;Han, Kyooseung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.151-156
    • /
    • 2013
  • As the cathode material for li-ion battery, $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ were synthesized by supercritical hydrothermal method and calcined $850^{\circ}C$ and $900^{\circ}C$ for 10hrs in air. The effect of temperature in the heat treatment on the powder and its performance were studied of xray diffraction pattern, SEM-image, physical properties and electrochemical behaviors. As a result, calcined at $900^{\circ}C$ material particle size more increase than calcined at $850^{\circ}C$ material, especially shows excellent electrochemical performance with initial reversible specific capacity of 163.84 mAh/g (0.1C/2.0-4.3V), 186.87 mAh/g (0.1C/2.0-4.5V) and good capacity retention of 91.49% (0.2C/2.0-4.3V) and 90.36% (0.2C/2.0-4.5V) after 50th charge/discharge cycle.

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.

CuO의 첨가량에 따른 Ni-Zn 페라이트의 소결 및 자기적 특성 변화

  • Kim, Seong-Tae;Kim, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.216-216
    • /
    • 2009
  • $(Ni_{1-x-y}Zn_xCu_y)Fe_2O_4(x=0.45,\;0{\leq}y{\leq}0.3)$ was synthesized by conventional ceramic processing, and the sintering behavior and the magnetic properties of which were studied as functions of CuO content and sintering temperature. Both the densification and the grain growth rates were significantly enhanced with the increase of CuO content, while abnormal grain growth occurred when the samples of $y{\geq}0.2$ were sintered above $950^{\circ}C$. Saturation magnetization and coercive field were mainly influenced by the densification and grain growth of the specimens, respectively.

  • PDF

Experimental design approach for ultra-fast nickel removal by novel bio-nanocomposite material

  • Ince, Olcay K.;Aydogdu, Burcu;Alp, Hevidar;Ince, Muharrem
    • Advances in nano research
    • /
    • v.10 no.1
    • /
    • pp.77-90
    • /
    • 2021
  • In the present study, novel chitosan coated magnetic magnetite (Fe3O4) nanoparticles were successfully biosynthesized from mushroom, Agaricus campestris, extract. The obtained bio-nanocomposite material was used to investigate ultra-fast and highly efficient for removal of Ni2+ ions in a fixed-bed column. Chitosan was treated as polyelectrolyte complex with Fe3O4 nanoparticles and a Fungal Bio-Nanocomposite Material (FBNM) was derived. The FBNM was characterized by using X-Ray Diffractometer (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS), Fourier Transform Infrared spectra (FTIR) and Thermogravimetric Analysis (TGA) techniques and under varied experimental conditions. The influence of some important operating conditions including pH, flow rate and initial Ni2+ concentration on the uptake of Ni2+ solution was also optimized using a synthetic water sample. A Central Composite Design (CCD) combined with Response Surface Modeling (RSM) was carried out to maximize Ni2+ removal using FBNM for adsorption process. A regression model was derived using CCD to predict the responses and analysis of variance (ANOVA) and lack of fit test was used to check model adequacy. It was observed that the quadratic model, which was controlled and proposed, was originated from experimental design data. The FBNM maximum adsorption capacity was determined as 59.8 mg g-1. Finally, developed method was applied to soft drinks to determine Ni2+ levels. Reusability of FBNM was tested, and the adsorption and desorption capacities were not affected after eight cycles. The paper suggests that the FBNM is a promising recyclable nanoadsorbent for the removal of Ni2+ from various soft drinks.