• Title/Summary/Keyword: $Ni_2O_3$

Search Result 1,942, Processing Time 0.032 seconds

Magnetic Characteristics and Annealing Effects of $NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$Spin Tunneling Junctions ($NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$ 스핀 터널링 접합의 자기적 특성과 열처리 효과)

  • 최연봉;박승영;강재구;조순철
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.296-300
    • /
    • 1999
  • Cross-shape structures of spin tunneling junctions were fabricated using DC magnetron sputtering and metal masks. The film structures were $substrate/Ta/NiFe/FeMn/NiFe/CoFe/Al_2O_3/CoFe/NiFe$ and $substrate/Ta/NiFe/CoFe/ Al_2O_3/CoFe/NiFe/FeMn/NiFe$. Fabrication conditions of insulating layer ($Al_2O_3$) and thickness and sputtering power of each film layer were varied, and maximum magnetoresistance ratio of 24.3 % was obtained. Magnetic characteristic variations in the above mentioned two structures and two types of substrates (Corning glass 7059 and Si(111)) were compared. Annealing of the junctions was performed to find out magnetic characteristic variations expected from the device fabrication. Magneoresistance Ratio were observed to maintain as-deposited value up to 150 $^{\circ}C$ annealing and then to drop rapidly after 180 $^{\circ}C$ annealing.

  • PDF

Corrosion Behavior of Austenitic Alloys in the Molten Salts of $LiCl-Li_2O_2$ ($LiCl-Li_2O_2$ 용융염계에서 오스테나이트계 합금의 부식거동)

  • 오승철;윤기석;임종호;조수행;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.373-378
    • /
    • 2003
  • As a part of assessment of the structural material for the molten salt handling system, corrosion behavior of austenitic alloys, Fe-base and Ni-base in the molten salt of $LiCl-Li_2O_2$ was investigated in the range of temperature; 650~$725^{\circ}C$, time; 24- 168h, $Li_2O$; 3wt%, mixed gas; Ar-10%$O_2$. In the molten salt of $LiCl-Li_2O_2$, Ni-base alloys showed higher corrosion resistance than Fe-base alloys. Fe-base alloy with low Fe and high Ni contents exhibited better corrosion resistance. The scales of $Cr_2O_3$, $FeCr_2O_4$ on Fe-base alloys were showed, and $Cr_2O_3$, $NiFe_2O_4$ on Ni-base alloys were also showed.

  • PDF

Electrochemical Properties of LixCoyNi1-yO2 Prepared by Citrate Sol0Gel Method

  • 장순호;강성구;장기호
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 1997
  • The electrochemical properties of LixCoyNi1-yO2 compounds (y=0.1, 0.3, 0.5, 0.7, 1.0) prepared by citrate sol-gel method have been investigated. The LixCoyNi1-yO2 compounds were annealed at 850 ℃ for 20 h after preheating at 650 ℃ for 6 h, in air. The x-ray diffraction (XRD) patterns for LixCoyNi1-yO2 have shown that these compounds have a well developed layered structure (R&bar{3} m). From the scanning electron microscopy of LixCoyNi1-yO2, particle size was estimated less than 5 μm. The Li//LixCoyNi1-yO2 electrochemical cell consists of Li metal anode and 1 M LiClO4-propylene carbonate (PC) solution as the electrolyte. The differences in intercalation rate of the LixCoyNi1-yO2 in the first charge/discharge cycle were less than 0.05 e-. The first discharge capacities of LixCoO2 and LixCo0.3Ni0.7O2 were ∼130 mAh/g and ∼160 mAh/g, respectively.

Gas Sensing Characteristics of SnO2 Coated with Catalyst for Hydrocarbon Gas (촉매가 첨가된 SnO2 가스센서의 탄화수소 가스에 대한 감응 특성)

  • Lee, Ji-Young;Yu, Il
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.358-361
    • /
    • 2012
  • Co and Ni as catalysts in $SnO_2$ sensors to improve the sensitivity for $CH_4$ gas and $CH_3CH_2CH_3$ gas were coated by a solution reduction method. $SnO_2$ thick films were prepared by a screen-printing method onto $Al_2O_3$ substrates with an electrode. The sensing characteristics were investigated by measuring the electrical resistance of each sensor in a chamber. The structural properties of $SnO_2$ with a rutile structure investigated by XRD showed a (110) dominant $SnO_2$ peak. The particle size of the $SnO_2$:Ni powders with Ni at 6 wt% was about 0.1 ${\mu}m$. The $SnO_2$ particles were found to contain many pores according to a SEM analysis. The sensitivity of $SnO_2$-based sensors was measured for 5 ppm of $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air to that in the target gases. The results showed that the best sensitivity of $SnO_2$:Ni and $SnO_2$:Co sensors for $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature was observed in $SnO_2$:Ni sensors coated with 6 wt% Ni. The $SnO_2$:Ni gas sensors showed good selectivity to $CH_4$ gas. The response time and recovery time of the $SnO_2$:Ni gas sensors for the $CH_4$ and $CH_3CH_2CH_3$ gases were 20 seconds and 9 seconds, respectively.

Development of High-Efficient Organic Solar Cell With $TiO_2$/NiO Hole-Collecting Layers Using Atomic Layer Deposition

  • Seo, Hyun Ook;Kim, Kwang-Dae;Park, Sun-Young;Lim, Dong Chan;Cho, Shinuk;Kim, Young Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.157-158
    • /
    • 2013
  • Organic solar cell was fabricated using one-pot deposition of a mixture of NiO nanoparticles, P3HT and PCBM. In the presence of NiO, the photovoltaic performance was slightly increased comparing to that of the device without NiO. When $TiO_2$ thin films with a thickness of 2~3 nm was prepared on NiO nanoparticles using atomic layer deposition, the power conversion efficiency was increased by a factor 2.5 with respect to that with bare NiO. Moreover, breakdown voltage of the film consisting of NiO, P3HT, and PCBM on indium tin oxide was increased by more than 1 V in the presence of $TiO_2$-shell on NiO nanoparticles. It is evidenced that S atoms of P3HT can be oxidized on NiO surfaces, and $TiO_2$-shell on NiO nanoparticles. It is evidenced that S atoms of P3HT can be oxidzed on NiO surfaces, and $TiO_2$ shell heavily reduced oxidation of S at oxide/P3HT interfaces. Oxidized S atoms can most likely act as carrier generation sites and recombination centers within the depletion region, decreasing breakdown voltage and performance of organic solar cells. Our result shows that fabrication of various core-shell nanostruecutres of oxides by atomic layer deposition with controlled film thickness can be of potential importance for fabricating highly efficient organic solar cells.

  • PDF

Hot Corrosion of NiCrAlY(ZrO2-Y2O3) Heat Resistant Composite Coatings for Gas Turbines (가스터빈용 NiCrAlY/(ZrO2-Y2O3) 내열복합코팅의 고온 용융염 부식)

  • Lee, Jae Ho;Lee, Changhee;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.506-513
    • /
    • 2010
  • The composite coatings of $(ZrO_2-8Y_2O_3)$/(Ni-22Cr-10Al-1Y) were prepared by the air plasma spraying method. They consisted of (Ni,Cr)-rich regions,$(ZrO_2-Y_2O_3)$-rich regions, and $Al_2O_3$-rich regions that were formed by oxidation of Al from (Ni-22Cr-10Al-1Y) during spraying. The coatings corroded at 800 and $900^{\circ}C$ in NaCl-$Na_2SO_4$ molten salts up to 50 hr. Ni, Cr and Al oxidized to NiO, $Cr_2O_3$ and ${\alpha}-Al_2O_3$, respectively. These oxides and $(ZrO_2-Y_2O_3)$ were dissolved off into the molten salts during hot corrosion, which resulted in the ever-lasting corrosion of the composite coatings. Chromium diffused out from the (Ni,Cr)-rich regions and oxidized to $Cr_2O_3$, which was most frequently found as surface scales. Aluminum retained in the (Ni,Cr)-rich regions were similarly diffused out.

Interaction of SO2 with Oxygen on Ni(100) Studied by XPS and NEXAFS

  • Kim, Chang-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2037-2039
    • /
    • 2006
  • The adsorption and surface reactions of $SO_2$ on Ni(100), c($2{\times}2$)_O/Ni (100) and NiO(111)/Ni(100) surfaces have been investigated using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) technique. On Ni(100), chemisorbed $SO_2$ is formed at 160 K. When $SO_2$ is adsorbed on c($2{\times}2$)_O/Ni(100) at 160 K, $SO_2$ reacts with oxygen to form $SO_3$ and trace amount of $SO_4$ species. $SO_3$ is adsorbed on this surface with its $C_3$ axis perpendicular to the surface. On a NiO(111)/Ni(100) surface, both $SO_3$ and $SO_4$ species are formed at 160 K from adsorbed $SO_2$.

The Variation of Permeability and$Q_{max}$ Frequency with Processing Parameters in NiCuZn Ferrites (제조 공정 Parameter에 따른 NiCuZn Ferrite의 투자율과 $Q_{max}$ 주파수 변화)

  • 신재영;박지호;박진채;한종수;송병무
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 1997
  • Composition and process conditions for low temperature sintered NiCuZn ferrites were investigated, so as to fabricate multilayered chip inductor. The$Fe_2O_3$ deficiency for low temperature sintering was decreased with NiO contents of NiCuZn ferrites. The permeability of NiCuZn ferrites can be controlled in the range of 12~562 with the variation of NiO and $Co_3O_4$ contents. The $Q_{max} $ frequency of NiCuZn ferrites was decreased from 50 MHz to 3 MHz linearly with permeability increase from 60 to 560. The relation between the $Q_{max}$ frequency(Y) and permeability(X) of NiCuZn ferrites was expressed with the following empirical equation, logY=4.2-1.4logX.

  • PDF

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution (과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성)

  • BO, LING;RIM, HYUNG-RYUL;LEE, HONG-KI;PARK, GYUNGSE;SHIM, JOONGPYO
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.

Microstructure and Properties of Nano-Sized Ni-Fe Alloy Dispersed Al2O3 Composites (Ni-Fe 합금입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • 남궁석;정재영;오승탁;이재성;이홍재;정영근
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.161-166
    • /
    • 2002
  • Processing and properties of $Al_2O_3$ composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of $Al_2O_3$/Ni-Fe alloy were prepared by the solution-chemistry route using $Al_2O_3$, $Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on $Al_2O_3$ powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics.