• Title/Summary/Keyword: $NiMn_2O_4$

Search Result 303, Processing Time 0.02 seconds

Electric Properties of NTC Thermistor with $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ system for Mobile Communication Telephone (이동통신 단말기용 $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$계 NTC 써미스터의 전기적 특성)

  • Yoon, Joong-Rak;Kim, Jee-Gyun;Lee, Heon-Yong;Lee, Seok-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.506-508
    • /
    • 2000
  • Oxide of the form $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ present properties that make them useful as multilayer chip NTC thermistor for mobile phone NTC thermistor electric properties of $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ system has been measured as a function of temperature and composition. In $Mn_{3}O_{4}-NiO-Fe_{2}O_{3}$ composition, it can be seen that resistivity and B-constant were increased as the ratio of $Mn_{3}O_{4}/F_{2}O_{3}$ and $Mn_{3}O_{4}$/NiO was increased. In particular, resistance change ratio (${\Delta}R$), the important factor for reliability varied within ${\pm}1%$, indicating the compositions of these products could be available for mobile phone.

  • PDF

Electrochemical Characteristics of LiNi0.5Mn1.5O4 Spinel as 5 V Class Cathode Material for Lithium Secondary Batteries (5V급 고전압 양극 LiNi0.5Mn1.5O4 Spinel의 제조와 전기화학적 특성에 관한 연구)

  • Jeon, Sang-Hoon;Oh, Si-Hyoung;Lee, Byung-Jo;Cho, Won-Il;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.4
    • /
    • pp.172-176
    • /
    • 2005
  • Recently, many researches on the high-voltage 5 V class cathode material have focused on $LiNi_{0.5}Mn_{1.5}O_4$, where $Mn^{3+}$ in the existing $LiMn_2O_4 (Li[Mn^{3+}][Mn^{4+}]O_4)$ is replaced by $Ni^{2+}(Li[Ni^{2+}]_{0.5}[Mn^{4+}]_{1.5}O_4)$ in order to utilize $Ni^{2+}/Ni^{4+}$ redox reaction in the 5V region. The partial substitution of Mn in $LiMn_2O_4$ for other transition metal element, $LiM_yMn_{1-y}O_4$(M=Cr, Al, Ni, Fe, Co, Cu, Ga etc) is known as a good solution to overcome the problems associated with $LiMn_2O_4$ like the gradual capacity fading. In this study, we synthesized $LiNi_{0.5}Mn_{1.5}O_4$ through a mechanochemical process and investigated its morphological, crystallographic and electrochemical characteristics. The results showed that 4 V peaks had been found in the cyclic volammograms of the synthesized powders due to the existence of $Mn^{3+}$ from the incomplete substitution of $Ni^{2+}$ for $Mn^{3+}$ implying that the mechanochemical activation alone was not good enough to synthesize an exact stoichiometric compound of $LiNi_{0.5}Mn_{1.5}O_4$. The synthetic condition of mechanochemical process, such as type of starting materials, ball-mill and calcination condition was optimized for the best electrochemical performance.

Effect of ZrO2 Addition on the Microstructure and Electrical Properties of Ni-Mn Oxide NTC Thermistors (Ni-Mn 산화물 NTC 서미스터의 미세구조와 전기적 특성에 미치는 ZrO2첨가의 효과)

  • 박경순;방대영;윤성진;최병현
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.11-17
    • /
    • 2003
  • The effect of$ZrO_2$addition on the microstructure and electrical properties of Ni-Mn oxide NTC thermistors was studied. Major phases present in the sintered bodies of $Ni_{1.0}Mn_{2-x}Zr_xO_4$ were the solid solutions of Ni-Mn-Zr oxides with a cubic spinel structure and the $ZrO_2$ with a tetragonal structure. The $ZrO_2$ was formed by the partial decomposition or incomplete formation of the Ni-Mn-Zr oxides during sintering. With increasing the amount of added $ZrO_2$, the $ZrO_2$ phase increased. The relationship between log resistivity (log p) and the reciprocal of absolute temperature (1/T) of the NTC thermistors prepared was linear, indicative of NTC characteristics. The resistivity, B constant and activation energy of the thermistors increased with increasing $ZrO_2$ content.

Nickel Substitution Effects on Nano-sized Co, Mn and MnZn Ferrites Synthesized by Sol-gel Method

  • Choi, Won-Ok;Kwon, Woo Hyun;Chae, Kwang Pyo;Lee, Young Bae
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Nickel substituted nano-sized ferrite powders, $Co_{1-x}Ni_xFe_2O_4$, $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$), were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently compared. The lattice constants decreased as quantity of nickel substitution increased, while the particle size decreased in $Co_{1-x}Ni_xFe_2O_4$ ferrite but increased for the $Mn_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites. For the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-x}Ni_xFe_2O_4$ ($0.0{\leq}x{\leq}0.2$) ferrite powders, the $M{\ddot{o}}ssbauer$ spectra could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of $Mn_{0.8}Zn_{0.1}Ni_{0.1}Fe_2O_4$ consisted of two Zeeman sextets and one single quadrupole doublet due to the ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explain the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. The saturation magnetization decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. The coercivity decreased in the $Co_{1-x}Ni_xFe_2O_4$ and $Mn_{1-2x}Zn_xNi_xFe_2O_4$ ferrites but increased in the $Mn_{1-x}Ni_xFe_2O_4$ ferrite with nickel substitution. These variations could thus be explained by using the site distribution equations, particle sizes and spin magnetic moments of the substituted ions.

Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries (전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성)

  • 박재홍;김정식;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF

The Studies of Structural Stability of LiNi0.5Mn1.5O4 Spinel (스피넬 LiNi0.5Mn1.5O4 양극 활물질의 구조 안정성 연구)

  • Park, Sung-Bin;Kim, Yool-Koo;Lee, Wan-Gyu;Cho, Won-Il;Jang, Ho
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.174-181
    • /
    • 2008
  • The stability of the cathode materials for Li secondary battery is an important factor for its cyclability. The present paper focuses on the structural stability of $LiNi_{0.5}Mn_{1.5}O_4$ during lithiation/delithiation of Li ions and compared to that of $LiMn_{2}O_4$. $LiMn_{2}O_4$ and $LiNi_{0.5}Mn_{1.5}O_4$ powders are synthesized using a solgel method and their structural and electrochemical properties are investigated by XRD, SEM, and charge-discharge tests. $Li_xMn_2O_4$ and $Li_xNi_{0.5}Mn_{1.5}O_4$(x = 0.9,0.5,0.1) specimens are obtained after charge/discharge tests by controlling the cut-off voltage for XRD and TEM investigation. The charge-discharge tests shows that initial capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is 125 mAh/g and that of LiMn2O4 is around 100 mAh/g. The capacity of $LiNi_{0.5}Mn_{1.5}O_4$ is maintained 95% of its initial capacity whereas the capacity of $LiMn_{2}O_4$ is maintained 65% of its initial capacity.

Synthesis and characterization of LiMn1.5Ni0.5O4 powders using polymerization complex method (착체중합법을 이용한 LiMn1.5Ni0.5O4 분말합성 및 특성평가)

  • Sin, Jae-Ho;Kim, Jin-Ho;Hwang, Hae-Jin;Kim, Ung-Soo;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.194-199
    • /
    • 2012
  • The $LiMn_{1.5}Ni_{0.5}O_4$, substituting a part of Mn with Ni in the $LiMn_2O_4$, the spinel structure has good charge-discharge cycle stability and high discharge capacity at 4.7 V. In this study $LiMn_{1.5}Ni_{0.5}O_4$ powders were synthesized by polymerization complex method. The effect on the characteristics of synthesized $LiMn_{1.5}Ni_{0.5}O_4$ powders was studied with citric acid (CA) : metal ion (ME) molar ratio (5 : 1, 10 : 1, 15 : 1, 30 : 1) and calcination temperature ($500{\sim}900^{\circ}C$). Single phase of $LiMn_{1.5}Ni_{0.5}O_4$ was observed from XRD analysis on the powders calcined at low ($500^{\circ}C$) and high temperatures ($900^{\circ}C$). The crystalline size and crystallinity increased with calcination temperature. At low calcination temperature the particle size decreased and specific surface area increased as the CA molar ratio increased. On the other hand, high particle growth rate at high calcination temperature interfered the particle size reduction and specific surface area increase induced by the increase of CA molar ratio.

A Study on the Recovery of Li2CO3 from Cathode Active Material NCM(LiNiCoMnO2) of Spent Lithium Ion Batteries

  • Wang, Jei-Pil;Pyo, Jae-Jung;Ahn, Se-Ho;Choi, Dong-Hyeon;Lee, Byeong-Woo;Lee, Dong-Won
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.296-301
    • /
    • 2018
  • In this study, an experiment is performed to recover the Li in $Li_2CO_3$ phase from the cathode active material NMC ($LiNiCoMnO_2$) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and $Li_2MnO_3$ phases within the powder to $Li_2CO_3$ and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of $600^{\circ}C{\sim}800^{\circ}C$ in a $CO_2$ gas (300 cc/min) atmosphere. At $600{\sim}700^{\circ}C$, $Li_2CO_3$ and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At $800^{\circ}C$, we can confirm that LiNiO, LiCoO, and $Li_2MnO_3$ phases are separated into $Li_2CO_3$ and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of $Li_2CO_3$ and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the $Li_2CO_3$ within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, $Li_2CO_3$ can be recovered.

The Electrical Properties and Aging Effects on the Composition of Mn-Co-Ni NTC Thermistors (Mn-Co-Ni 산화물계 NTC 서미스터의 조성에 따른 전기적 특성과 경시변화)

  • 권정범;정용근;엄우식;송준광;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1174-1179
    • /
    • 2001
  • Mn-Co-Ni oxide system has been used as the NTC thermistors for normal temperature applications. Mn-Co-Ni oxide-based thermistors with various compositions were sintered at 1250$^{\circ}C$ for 3 hours and then maintained at 1000$^{\circ}C$ for 3 hours. The electrical properties of the thermistors fabricated were measured. In particular the MCN622 composition (Mn$_3$O$_4$60 wt%, Co$_3$O$_4$20 wt%, NiO 20wt%) exhibited the lowest resistivity and relatively high B constant. The MCN721 composition (Mn$_3$O$_4$70wt%, Co$_3$O$_4$20wt%, NiO 10 wt%) showed the higher resistivity than any other compositions. The aging properties of each composition showed comparatively stable characteristics within ${\pm}$2%.

  • PDF

Electrochemical Properties of LiMn2O4-LiNi1/3Mn1/3Co1/3O2 Cathode Materials in Lithium Secondary Batteries (리튬이차전지 양극활물질용 LiMn2O4-LiNi1/3Mn1/3Co1/3O2의 전기화학적 특성)

  • Kong, Ming Zhe;Nguyen, Van Hiep;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.5
    • /
    • pp.298-302
    • /
    • 2016
  • In this work, $LiMn_2O_4$ and $LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ cathode materials are mixed by some specific ratios to enhance the practical capacity, energy density and cycle performance of battery. At present, the most used cathode material in lithium ion batteries for EVs is spinel structure-type $LiMn_2O_4$. $LiMn_2O_4$ has advantages of high average voltage, excellent safety, environmental friendliness, and low cost. However, due to the low rechargeable capacity (120 mAh/g), it can not meet the requirement of high energy density for the EVs, resulting in limiting its development. The battery of $LiMn_2O_4-LiNi_{1/3}Mn_{1/3}Co_{1/3}O_2$ (50:50 wt%) mixed cathode delivers a energy density of 483.5 mWh/g at a current rate of 1.0 C. The accumulated capacity from $1^{st}$ to 150th cycles was 18.1 Ah/g when the battery is cycled at a current rate of 1.0 C in voltage range of 3.2~4.3 V.