• Title/Summary/Keyword: $Na_2SiF_6$

Search Result 74, Processing Time 0.029 seconds

Synthesis and Characterization of the Large Single Crystal of Fully K+-exchanged Zeolite X (FAU), |K80|[Si112Al80O384]-FAU (Si/Al=1.41)

  • Lim, Woo-Taik;Jeong, Gyo-Cheol;Park, Chang-Kun;Park, Jong-Sam;Kim, Young-Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2007
  • Large colorless single crystals of sodium zeolite X, stoichiometry |Na80 |[Si112Al80O384]-FAU, with diameters up to 200 μm and Si/Al = 1.41 have been synthesized from gels with the composition of 2.40SiO2 : 2.00NaAlO2 : 7.52NaOH : 454H2O : 5.00TEA. One of these, a colorless octahedron about 200 μm in cross-section has been treated with aqueous 0.1 M KNO3 for the preparation of K+-exchanged zeolite X. The crystal structure of |K80|[Si112Al80O384]-FAU per unit cell, a = 24.838(4) A, dehydrated at 673 K and 1 × 10-6 Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 294 K. The structure was refined using all intensities to the final error indices (using only the 707 reflections for which Fo > 4σ (Fo)) R1 = 0.075 (based on F) and R2 = 0.236 (based on F2). About 80 K+ ions per unit cell are found at an unusually large number of crystallographically distinct positions, eight. Eleven K+ ions are at the centers of double 6-rings (D6Rs, site I; K-O = 2.492(6) A and O-K-O (octahedral) = 88.45(22)o and 91.55(22)o). Site-I' position (in the sodalite cavities opposite D6Rs) is occupied by five K+ ions per unit cell; these K+ ions are recessed 1.92 A into the sodalite cavities from their 3-oxygen planes (K-O = 2.820(19) A, and O-K-O = 78.6(6)o). Twety-three K+ ions are found at three nonequivalent site II (in the supercage) with occupancies of 5, 9, and 9 ions; these K+ ions are recessed 0.43 A, 0.75 A, and 1.55 A, respectively, into the supercage from the three oxygens to which it is bound (K-O = 2.36(13) A, 2.45(13) A, and 2.710(13) A, O-K-O = 116.5(20)o, 110.1(17)o, and 90.4(6)o, respectively). The remaining sixteen, thirteen, and twelve K+ ions occupy three sites III' near triple 4-rings in the supercage (K-O = 2.64(3) A, 2.94(3) A, 2.73(5) A, 2.96(6) A, 3.06(4) A, and 3.08(3) A).

Single-crystal Structure of Fully Dehydrated and Largely NH4+-exchanged Zeolite Y (FAU, Si/Al = 1.70), │(NH4)60Na11│[Si121Al71O384]-FAU

  • Seo, Sung-Man;Kim, Ghyung-Hwa;Kim, Young-Hun;Wang, Lian-Zhou;Lu, Gao-Qing;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.543-550
    • /
    • 2009
  • The single-crystal structure of largely ammonium-exchanged zeolite Y dehydrated at room temperature (293 K) and 1 ${\times}\;10^{-6}$ Torr. has been determined using synchrotron X-radiation in the cubic space group $Fd\overline{3}m\;(a=24.9639(2)\AA)$ at 294 K. The structure was refined to the final error index $R_1$ = 0.0429 with 926 reflections where $F_o>4\sigma(F_o)$; the composition (best integers) was identified as |$(NH_4)_{60}Na_{11}$|[$Si_{121}Al_{71}O_{384}$]-FAU. The 11 $Na^{+}$ ions per unit cell were found at three different crystallographic sites and 60 ${NH_4}^{+}$ ions were distributed over three sites. The 3 $Na^{+}$ ions were located at site I, the center of the hexagonal prism ($Na-O\;=\;2.842(5)\;\AA\;and\;O-Na-O\;=\;85.98(12)^{\circ}$). The 4 $Na^{+}$ and 22 ${NH_4}^{+}$ ions were found at site I' in the sodalite cavity opposite the double 6-rings, respectively ($Na-O\;=\;2.53(13)\;\AA,\;O-Na-O\;=\;99.9(7)^{\circ},\;N-O\;=\;2.762(11)\;\AA,\;and\;O-N-O =\;89.1(5)^{\circ}$). About 4 $Na^{+}$ ions occupied site II ($(Na-O\;=\;2.40(4)\;\AA\;and\;O-Na-O\;=\;108.9(3)^{\circ}$) and 29 ${NH_4}^{+}$ ions occupy site II ($N-O\;=\;2.824(9)\;\AA\;and\;O-N-O\;=\;87.3(3)^{\circ}$) opposite to the single 6-rings in the supercage. The remaining 9 ${NH_4}^{+}$ ions were distributed over site III' ($N-O\;=\;2.55(3),\;2.725(13)\;\AA\;and\;O-N-O\;=\;94.1(13),\;62.16(15),\;155.7(14)^{\circ}$).

Mineral Characteristics of Spring Water in Chonam (전남지역 약수의 미네랄 특성)

  • Moon, Hee;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.253-259
    • /
    • 1998
  • Minerals of spring water in 47 sites of Chonnam were analyzed. Samples were collected 2 times, autumn and winter. The mineral concentrations (mean value) at maximum distribution rate were Ca 3.9, K 0.78, Na 7.4, Mg 0.7, Si 9.4, Ba 0.004, Ni 0.007, F 0.16, Cl 4.9, $SO_4$ 1.5, Fe 0.001, Zn 0.002 ppm, respectively. In case of Na, K, Ca, Mg, Si, Cl, Ba and Ni, the correlation coefficient was positive (p<0.05). K and O values were used as the indexes of healthy and delicious water. The K and O indexes of spring water which appeared to be good for health and deliciousness were 6.3 and 5.2, respectively. 98% of spring water in Chonnam appeared to be good for health and deliciousness.

  • PDF

A Study on the Metal Ion Components of Airborn Particulates during Yellow Sand Phenomena in Seoul (황사현상시 서울지역 대기분진의 성분에 관한 연구)

  • 신찬기;박태술;김윤신
    • Journal of environmental and Sanitary engineering
    • /
    • v.6 no.1
    • /
    • pp.47-62
    • /
    • 1991
  • Yellow Sand Phenomena was observed from April 8 th to 10 th in 1990. During this period particle was collected to investigate the chacteristics of chemical composition of particulate by High Volume Air Sampler and Andersen Air Sa~npler in Seoul. During this period the particle concentration was 350 yg/$m^3$ and the anions, cations, and metal concentrations were increased and the orders of these were $S0_4\;^{-2}>N0_3\;^->Cl^->F^-, Na^+>Ca^{+2}>NH_4\;^+>Mg^{2+}>K^+$, and Fe>Al>Si>Zn>Pb respectively. The principal source of Yellow Sand were identified soil and sea salt. Mn used by the trace element of soil, the persentage of contribution from soil was calculated to be about 81.3% for the particle increased by Yellow Sand Phenomena. Also the principal chemical compounds of particle were estimate metals(Fe, Al, Si, Zn) oxides, $CaSO_4, NaSO_4, MgSO_4, NaC1, MgCl_2$ and $(NH_4)_2SO_4$.

  • PDF

Effects of Salt Flux and Alloying Elements on the Coalescence Behaviour of Aluminum Droplets (알루미늄 Droplets 합체거동에 미치는 Salt Flux 및 합금원소 첨가의 영향)

  • Kim, Ye-Sik;Yoon, Eui-Pak;Kim, Ki-Tae;Jung, Woon-Jae;Jo, Duk-Ho
    • Journal of Korea Foundry Society
    • /
    • v.20 no.1
    • /
    • pp.38-45
    • /
    • 2000
  • The remelting for recycling or thin aluminum scrap, such as aluminum chip generally involves melting of these pieces submerged in molten salt flux. In this study, the effects of salt flux compositions and alloying elements on the aluminum dropletscoalescence and oxide film removal were studied in 99.8%Al, Al-1.01%Cu, Al-1.03%Si, and Al-1.38%Mg alloys as a function of holding time at $740^{\circ}C$ Salt fluxes based on NaCl-KCl(1:1) with addition of 5wt.% fluorides(NaF, $Na_3AlF_6$, $CaF_2$) or 5 wt.% chloride($MgCl_2$, $AlCl_3$) were used. The experimental results show that NaCl-KCl(1:1) with addition of 5 wt.% fluorides exhibits better coalescence ability than that with chlorides. The oxide film is not removed by NaCl-KCl(1:1) with addition of 5 wt.%chlorides, while it is removed by NaCl-KCl(1:1) with addition of 5 wt.% fluorides. The aluminum droplets coalescence and oxide film removal by salt fluxes are related to interfacial tension tension between metal and salt flux.

  • PDF

Comparative Analysis of Cytotoxicity of Fluoride Compounds on Oral Cancer and Osteosarcoma Cells (불소화합물의 골육종 및 구강암 세포주에 대한 독성의 비교분석)

  • 송제선;이백수;김정희
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.3
    • /
    • pp.113-120
    • /
    • 1999
  • Fluorination of drinking water has been used world widely to reduce the incidence of caries. Recently, contradictory results on the cytotoxicity of fluoride compounds are reported. In addition, there are attempts to use fluorosilicate for fluorination of drinking water in Korea, therefore, we tried to analyze the cytotoxicity of fluoride compounds on oral epidermoid carcinoma (KB and A253) and osteosarcoma (HOS and MG-63) cells in this study. We treated cells with 0, 10, 50 and 250 ppm of fluorosilicic acid (domestic or from Fluka, F$\_$6/H$_2$Si), sodium fluorosilicate (F$\_$6/Na$_2$Si), sodium fluoroacetate (FCH$_2$CO$_2$Na), sodium fluoride (NaF) or potassium fluoride(KF) and measured the relative cell survival by MTT assay. At the concentration of < 10ppm, no significant cytotoxicity was observed. At 50 ppm, each cells revealed different response to fluoride treatment. Among cells used in this study, MG-63 was the most resistant to fluoride treatment. Comparable toxicity data from domestic and imported fluorosilicic acids were obtained. When we compared the relative cytotoxicity of fluoride compounds against their fluoride contents, the differences in relative cell survival were smaller. Most of cells showed < 20% of survival at 250 ppm. In order to analyze the pH dependence of the cytotoxicity of fluorosilicates, the pH of cell culture media containing fluorosilicate was adjusted to 7.4 or 6.5 and the relative cytotoxicity was measured. At lower pH, about 10% higher cytotoxicity was obtained. Thus, our data suggested that the toxicity of domestic fluorosilicic acid was similar to that of fluorosilicic acid from Fluka, and the cytotoxicity of fluoride compounds was dependent on the relative content of fluoride and pH.

  • PDF

CHEMICAL DEGRADATION OF VARIOUS COMPOMERS IN NaOH (콤포머의 NaOH 용액 내에서의 화학적 분해)

  • Park, Mi-Ran;Choi, Nam-Ki;Lee, Young-Jun;Kim, Seon-Mi;Yang, Kyu-Ho
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.144-152
    • /
    • 2004
  • The aim of this study was to evaluate the resistance to degradation of three commercial compomers in an alkaline solution. Dyract(Dentsply), Elan(Kerr) and F-2000(3M) polyacid modified resin composites(compomers) were used in this study. The resistance to degradation was evaluated on the basis of mass loss(%), degradation $depth({\mu}m)$ and Si, Al, Ba loss(ppm). The results were as follows : 1. The mass loss of each brand was $1.42%{\sim}2.14%$ and there was no statistically significant difference of mass loss among Dyract, F2000 and Elan. 2. The degradation layer depth of each brand was $182.92{\sim}227.7{\mu}m$ and there was no statistically significant difference of degradation layer depth among Dyract, F2000 and Elan. 3. There was statistically significant differences in Si-loss and Al-loss among three compomers (p<0.05). Si loss was the highest value in Dyract and Al loss was the highest value in F2000. 4. There was statistically significant correlation between mass loss and degradation layer depth (r=0.60, p<0.05). 5. In SEM finding, there was some destruction of compomer matrix-filler interface in post-exposure specimen to NaOH solution. As the matrix decreased, the filler particles distinguished and the periphery of the filler particles appeared whitish color due to degradation.

  • PDF

Understanding Growth mechanism of PEO coating using two-step oxidation process

  • Shin, Seong Hun;Rehman, Zeeshan Ur;Noh, Tae Hwan;Koo, Bon Heun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.173.2-173.2
    • /
    • 2016
  • A two-step oxidation method was applied on Al6061 to debate the growth mechanism of plasma electrolytic oxidation (PEO) coating. The specimens were first oxidized in the primary electrolyte solution {$Na_3PO_4$ (8g/l), NaOH (2g/l), consequently, the specimens were transferred into a different electrolyte {$K_2ZrF_6$ (8g/l), NaOH (2g/l), $Na_2SiF_6$ (0.5g/l)} for further oxidation. The processes was conducted for various processing times. It was found the second step electrolyte component were reached to inner layers, in contrast to the primary step components which were thrustle to the outer layer. The presence of the secondary component in the inner layers were significantly varied with processing time which suggest the change in growth properties with processing time. further more the inside growth of the secondary component confirmed the increasing trend in the downward growth of the coating layer. The corrosion and hardness properties of the coatings were found highly improved with change in growth features with increasing the processing time.

  • PDF

Synthesis and Structural Characterization of Benzene-sorbed Cd2+-Y(FAU) Zeolite (벤젠이 흡착된 Cd2+-Y(FAU) 제올라이트의 합성 및 구조연구)

  • Moon, Dae Jun;Suh, Jeong-Min;Park, Jong Sam;Choi, Sik Young;Lim, Woo Taik
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.45-57
    • /
    • 2017
  • Two single crystals of fully dehydrated $Cd^{2+}$-exchanged zeolites Y were prepared by the exchange of ${\mid}Na_{75}{\mid}[Si_{117}Al_{75}O_{384}]-FAU$ ($Na_{75}-Y$, Si/Al = 1.56) with aqueous $0.05M\;Cd(NO_3)_2$ (pH = 3.65) at 294 K, followed by vacuum dehydration at 723 K (crystal 1) and a second crystal, similarly prepared, was exposed to zeolitically dried benzene for 72 hours at 294 K and evacuated (crystal 2). Their structures were determined crystallographically using synchrotron X-rays and were refined to the final error indices using $F_o$>$4{\sigma}(F_o)$ of $R_1/wR_2=0.040/0.121$ and 0.052/0.168, respectively. In crystal $1({\mid}Cd_{36}H_3{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions primarily occupy sites I and II, with additional $Cd^{2+}$ ions at sites I', II', and a second site II. In crystal $2({\mid}Cd_{35}(C_6H_6)_{24}H_5{\mid}[Si_{117}Al_{75}O_{384}]-FAU)$, $Cd^{2+}$ ions occupy five crystallographic sites. The 24 benzene molecules are found at two distinct positions within the supercages. The 17 benzene molecules are found on the 3-fold axes in the supercages where each interacts facially with one of site IIa $Cd^{2+}$ ions. The remaining 7 benzene molecules lie on the planes of the 12-rings where each is stabilized by multiple weak electrostatic and van der Waals interactions with framework oxygens.

Single-crystal Structure of Partially Dehydrated Partially Mg2+-exchanged Zeolite Y (FAU), |Mg30.5Na14(H2O)2.5|[Si117Al75O384]-FAU

  • Kim, Hu-Sik;Ko, Seong-Oon;Lim, Woo-Taik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3696-3701
    • /
    • 2011
  • The single-crystal structure of partially dehydrated partially $Mg^{2+}$-exchanged zeolite Y, ${\mid}Mg{30.5}Na_{14}(H_2O)_{2.5}{\mid}$ [$Si_{117}Al_{75}O_{384}$]-FAU per unit cell, ${\alpha}$ = 25.5060(1) ${\AA}$, dehydrated at 723 K and $1{\times}10^{-4}$ Pa, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd$\bar{3}$ m at 100(1) K. The structure was refined using all intensities to the final error indices (using only the 561 reflections with $F_{\circ}$ > $4{\sigma}(F_{\circ})$) $R_1$ = 0.0377 (Based on F) and $R_2$ = 0.1032 (Based on $F^2$). About 30.5 $Mg^{2+}$ ions per unit cell are found at four different crystallographic sites. The 14 $Mg^{2+}$ ions occupy at site I at the center of double 6-ring (Mg-O = 2.231(3) ${\AA}$, O-Mg-O = $89.15(11)^{\circ}$ and $90.85(11)^{\circ}$). Four $Mg^{2+}$ ions are found at site I' in the sodalite cavity; the $Mg^{2+}$ ions are recessed 1.22 ${\AA}$ into the sodalite cavity from their 3-oxygen plane (Mg-O = 2.20(3) ${\AA}$ and O-Mg-O = $92.3(14)^{\circ}$). Site II' positions (opposite single 6-rings in the sodalite cage) are occupied by 2.5 $Mg^{2+}$ ions, each coordinated to an $H_2O$ molecule (Mg-O = 2.187(20) ${\AA}$ and O-Mg-O = $114.2(16)^{\circ}$). The 10 $Mg^{2+}$ ions are nearly three-quarters filled at site II in the supercage, being recessed 0.12 ${\AA}$ into the supercage (Mg-O = 2.123(4) A and O-Mg-O = $119.70(19)^{\circ}$). About 14 $Na^+$ ions per unit cell are found at one crystallographic site; the $Na^+$ ions are located at site II in the supercage (Na-O = 2.234(7) ${\AA}$ and O-Mg-O = $110.5(4)^{\circ}$).