• Title/Summary/Keyword: $NaNO_3$

Search Result 3,111, Processing Time 0.034 seconds

Effect of NaNO3 and NaHCO3 Concentration on Microglae Arthrospira platensis Growth (NaNO3, NaHCO3 농도가 Arthrospira platensis 생장에 미치는 영향)

  • Choi, Soo-Jeong;Ha, Jong-Myung;Lee, Jae-Hwa
    • KSBB Journal
    • /
    • v.30 no.6
    • /
    • pp.319-325
    • /
    • 2015
  • Arthrospira platensis (A. platensis) is one of the most explored cyanobacteria and has been studied for proteins, vitamins, pigment (chlorophyll and carotenoids) and fatty acid. In this study, we tested the effect of $NaHCO_3$ and $NaNO_3$ on the microalgae growth under photoautothrophic culture in A. platensis. As a result, cell growth and dry cell weight were increased in proportion to the $NaHCO_3$ and $NaNO_3$ concentration. Pigment (chlorophyll and carotenoids) contents of A. platensis were increased with proportion to $NaHCO_3$ concentration. But, the content of pigment (chlorophyll and carotenoids) in 100% $NaNO_3$ medium of A. platensis was the highest, 40%, 140% and 200% $NaNO_3$ medium with pigment content of A. platensis was reduced. In conditions of $NaHCO_3$ (50%) or $NaNO_3$ (40%) limitation, A. platensis could accumulate lipids to high as 1.7-fold and 1.3-fold.

The Improvement of Denitrofication by Using Sodium Salts in the SNCR Process (SNCR 공정에서 Sodium Salts 첨가제를 이용한 탈질반응 개선에 관한 연구)

  • Lee, Seung Moon;Park, Kwinam;Kwak, Tae-Heon;Park, Jin-Won;Makin, Sanjeev;Kim, Byung-Hwan
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.324-329
    • /
    • 2005
  • The efficiency of reducing nitric oxide using urea combined with alkali salt additives is reported in this study. The inlet concentration of NO is 500 ppm with air flow rates of 3 and 5 L/min. Reduction of NO was studied from 650 to $1,050^{\circ}C$ with urea concentrations of 0.3 to 1 mol/L. The efficiency for the reduction of NO increased by 44% when urea is added alone. A further increase in efficiency was observed in the presence of NaOH as additive in fact, the efficiency was increased by more than 25% and 75% when 0.5 mol/L and 1 mol/L NaOH were added with the urea. The efficiency for the reduction of NO increased with all additives, but descended in the order NaOH, $Na_2CO_3$, $NaNO_3$, HCOONa, and CHCOONa. The maximum efficiency of NaOH and $Na_2NO_3$ are 74% and 73%, respectively. All these additives did not alter the comparatively wide operating temperature window for reducing NO. However, sodium compounds do not shift the maximum NO concentration towards lower temperatures when the NO removal activity enhances.

Study on Recovery of Separated Hydrofluoric Acid, Nitric Acid and Acetic Acid Respectively from Mixed Waste Acid Produced during Semiconductor Wafer Process (반도체 웨이퍼 제조공정(製造工程) 중 발생혼합폐산(發生混合廢酸)으로부터 불산, 질산 및 초산의 각 산 회수(回收)에 관한 연구(硏究))

  • Kim, Ju-Yup;Kim, Hyun-Sang;Bae, Woo-Keun
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.62-69
    • /
    • 2009
  • We researched separation of mixed waste acids with HF, $CH_3COOH$, $HNO_3$ that were produced during a semiconductor wafer process to recycle these acids. At first, we manufactured the fluoride compound in form of $Na_2SiF_6$ by precipitating HF using $NaNO_3$ and Si powder. The concentration of HF was reduced from the initial concentration of 127 g/L to 0.5 g/L with an HF recovery ratio of 99.5%. After the manufacture of $Na_2SiF_6$, the concentration of $HNO_3$ and $CH_3COOH$ demonstrated 502 g/L and 117 g/L respectively. Following these findings we added NaOH in this $CH_3COOH/HNO_3$ mixed acid in order to obtain pH=4. Next we separated the $CH_3COOH$ and recoverd it through the use of vaccum evaporation at -440 mmHg, $95^{\circ}C$. The concentration of the recovered $CH_3COOH$ was approximately 15% and the recovery ratio of $CH_3COOH$ was over 85%. We precipitated the $NaNO_3$ by cooling the concentrated solution to $20^{\circ}C$ with a $HNO_3$ recovery ratio of over 93%. We confirmed that only $Na_2SiF_6$ and $NaNO_3$ were manufactured by XRD analysis after drying these precipitants at $90^{\circ}C$. The precipitants demonstrated a purity of approximately 97% and 98% respectively. Therefore, the purity of the precipitants proved to be similar to that of commercial products.

Ameliorating Effect of $\textrm{Ca}({NO_3})_2$ or $\textrm{CaCl}_2$ on the Growth and Yield of NaCl-Stressed Tomato Grown in Plastic Pots Filled with Soil (NaCl 스트레스를 받은 토마토의 생육 향상을 위한 $\textrm{Ca}({NO_3})_2$$\textrm{CaCl}_2$ 처리 효과)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Enhanced supply of $Ca^{2+}$ as well as NO$_3$$^{[-10]}$ is known to restrict the uptake of the Na$^{+}$ and Cl$^{[-10]}$ ion and ameliorate growth under saline conditions. This test was conducted to investigate the ameliorating effects of Ca(NO$_3$)$_2$ or CaCl$_2$ on the growth and yield of NaCl-stressed tomato plants grown in plastic pot filled with soil. All treatments except for the control were supplied with 80 mM NaCl fur two weeks after transporting. The saline solutions with nutrient were supplemented with either 0, 10 or 20 mM Ca(NO$_3$)$_2$ and either 0, 10 or 20 mM CaCl$_2$ during harvesting time from two weeks after transporting. Ca(NO$_3$)$_2$ or CaCl$_2$ application enhanced the growth such as plant height, fresh weight, dry weight, fruit number, and fruit weight, and yield of NaCl-stressed tomato, and also their effects increased greater as concentration of supplemented Ca(NO$_3$)$_2$ or CaCl$_2$increased. Yield increased in 20 mM Ca(NO$_3$)$_2$ compared with the others except fur the control. Photosynthetic rate in Ca treatments was lower than that of the control, but higher than that of NaCl treatment. Leaf chlorophyll content was higher in Ca treatments compared with the others, especially in younger leaf, while that was not affected by concentration of supplemented Ca. Ca(NO$_3$)$_2$ or CaCl$_2$ supply increased the $K^{+}$ and $C^{2+}$ concentration of tomato plants, whereas the Na$^{+}$ transport to the leaves was inhibited. There was a strong increase in the $K^{+}$/Na$^{+}$ ratio in plants treated Ca(NO$_3$)$_2$, or CaCl$_2$. Cl$^{[-10]}$ content of plants was decreased by supplemental Ca(NO$_3$)$_2$ but Cl$^{[-10]}$ was increased in plants with CaCl$_2$compared with Ca(NO$_3$)$_2$. N concentration in plants of tomato increased with enhanced Ca(NO$_3$)$_2$ or CaCl$_2$supply, In conclusion, our study confirms the potential of Ca(NO$_3$)$_2$ or CaCl$_2$to alleviate NaCl-induced growth reductions in tomato.

Effect of NaCl on Nitrogen Content of Barley Seedlings

  • Kim, Choong-Soo;Cho, Jin-Woong;Lee, Sok-Young;Park, Kwan-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.4-10
    • /
    • 1999
  • This study was conducted to determine the effects of NaCl stress on nitrogen, ${NH_4}^+$, and ${NO_3}^-$ content of 4 barley cultivar seedlings that were cultured for 10 and 30 days with different NaCl levels (0, 50, 100, and 150 mM) contain-ing 1/4 Hoagland solutions. The sodium ion content in the shoot of barley seedlings sharply increased with an increase of NaCl concentration. After 30 days of NaCl treatment, the sodium content of the shoot at 150 mM NaCl was 27 times higher than in non-saline conditions. The sodium content in the root linearly increased with increasing NaCl concentration. Nitrogen content in the shoot linearly increased with increasing NaCl concentration, but nitrogen content in the root declined above the point where the $Na^+$ content was 3.0 mM/g $Na^+$ in the barley seedling. ${NO_3}^-$ content also decreased with increasing NaCl concentration. ${NH_4}^+$ content in the shoot decreased with NaCl condition, but its content in the root increased with NaCl condition. A positive correlation between ${NO_3}^-$ and ${NH_4}^+$ content was found in the shoot, but their relationship was negative in the root.

  • PDF

The Effects of Salt and $NaNO_2$ on Physico-Chemical Characteristics of Dry-cured Ham (소금과 아질산염 처리수준에 따른 건염햄의 이화학적 특성)

  • Seong, Pil-Nam;Kim, Jin-Hyoung;Cho, Soo-Hyun;Lee, Chang-Hyun;Kang, Dong-Woo;Hah, Kyoung-Hee;Lim, Dong-Gyun;Park, Beom-Young;Kim, Dong-Hoon;Lee, Jong-Moon;Ahn, Chong-Nam
    • the MEAT Journal
    • /
    • s.36 summer
    • /
    • pp.61-71
    • /
    • 2009
  • The aim of this work was to analyze the effects of salt and NaNO2 on weight loss, proximate compositions, chemical parameters and texture characteristics of dry-cured ham processed using Korean methods. Four different treatments were considered: The H8 group of 3 hams (11.30 kg) was salted with 9.2 g/kg salt (w/w) (high salt batch), the HS+NaNO2 group of 3 hams (10.65 kg) was salted same as HS group and added 100 ppm NaNO2. The LS group of 3 hams (11.42 kg) was salted with 6.2 g/kg salt (w/w) (Low salt batch), the LS+NaNO2 group of 3 hams (10.62 kg) was salted same as L8 group and added 100 ppm NaNO2. The highest weight losses took place at the drying stage (27.46, 28.25, 26.99, and 28.42%). However, there were no significant differences in the weight losses between treatments (p>0.05). The moisture content was significantly affected with addition of NaNO2 (p<0.05), the L8 hams had significantly higher moisture content than HS + NaNO2 and L8 + NaNO2 (p<0.05). The level of salt and NaNO2 did not affect the fat, protein and ash contents. The hardness and chewiness in biceps femoris muscle from L8 hams were significantly lower than in the muscles from HS + NaNO2 hams (p<0.05). The NaNO2 did not affect the texture characteristics of dry-cured hams. The processing conditions significantly affected the chemical parameters of biceps femoris muscle (p<0.05). The water activity in biceps femoris muscle from L8 hams was significantly higher than in muscles from HS and H8+NaNO2 hams (p<0.04). The salt content in biceps femoris muscles from LS + NaNO2 hams was significantly lower than in the muscles from HS and HS + NaNO2 hams (p<0.05). The NaNO2 treatment did not affect the NaNO2 content in biceps femoris muscles (p>0.05). The processing conditions did not significantly affect the lightness (L), redness (a), and $h^{\circ}$ of biceps femoris muscles (p>0.05). The yellowness (b) and chroma in biceps femoris muscle from HS + NaNO2 hams were significantly higher than in the muscles from HS and LS hams.

  • PDF

The Effects of Salt and NaNO2 on Physico-Chemical Characteristics of Dry-cured Ham (소금과 아질산염 처리수준에 따른 건염햄의 이화학적 특성)

  • Seong, Pil-Nam;Kim, Jin-Hyoung;Cho, Soo-Hyun;Lee, Chang-Hyun;Kang, Dong-Woo;Hah, Kyoung-Hee;Lim, Dong-Gyun;Park, Beom-Young;Kim, Dong-Hoon;Lee, Jong-Moon;Ahn, Chong-Nam
    • Food Science of Animal Resources
    • /
    • v.28 no.4
    • /
    • pp.493-498
    • /
    • 2008
  • The aim of this work was to analyze the effects of salt and $NaNO_2$ on weight loss, proximate compositions. chemical parameters and texture characteristics of dry-cured ham processed using Korean methods. Four different treatments were considered: The HS group of 3 hams (11.30 kg) was salted with 9.2 g/kg salt (w/w) (high salt batch), the HS+$NaNO_2$ group of 3 hams (10.65 kg) was salted same as HS group and added 100 ppm $NaNO_2$. The LS group of 3 hams (11.42 kg) was salted with 6.2 g/kg salt (w/w) (Low salt batch), the LS+$NaNO_2$ group of 3 hams (10.62 kg) was salted same as LS group and added 100 ppm $NaNO_2$. The highest weight losses took place at the drying stage (27.46, 28.25, 26.99, and 28.42%). However, there were no significant differences in the weight losses between treatments (p>0.05). The moisture content was significantly affected with addition of $NaNO_2$ (p<0.05), the LS hams had significantly higher moisture content than HS+$NaNO_2$ and LS+$NaNO_2$ (p<0.05). The level of salt and $NaNO_2$ did not affect the fat, protein and ash contents. The hardness and chewiness in biceps femoris muscle from LS hams were significantly lower than in the muscles from HS+$NaNO_2$ hams (p<0.05). The $NaNO_2$ did not affect the texture characteristics of dry-cured hams. The processing conditions significantly affected the chemical parameters of biceps femoris muscle (p<0.05). The water activity in biceps femoris muscle from LS hams was significantly higher than in muscles from HS and HS+$NaNO_2$ hams (p<0.05). The salt content in biceps femoris muscles from LS+$NaNO_2$ hams was significantly lower than in the muscles from HS and HS+$NaNO_2$ hams (p<0.05). The $NaNO_2$ treatment did not affect the $NaNO_2$ content in biceps femoris muscles (p>0.05). The processing conditions did not significantly affect the lightness (L), redness (a), and $h^{\circ}$ of biceps femoris muscles (p>0.05). The yellowness (b) and chroma in biceps femoris muscle from HS+$NaNO_2$ hams were significantly higher than in the muscles from HS and LS hams.

Effect of Alkali Metal Nitrates on the Ru/C-catalyzed Ring Hydrogenation of m-Xylylenediamine to 1,3-Cyclohexanebis(methylamine)

  • Kim, Young Jin;Lee, Jae Hyeok;Widyaya, Vania Tanda;Kim, Hoon Sik;Lee, Hyunjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1117-1120
    • /
    • 2014
  • Ru/C-catalyzed hydrogenation of m-xylylene diamine into 1,3-cyclohexanebis(methylamine) was greatly accelerated by the presence of $LiNO_3$, $NaNO_2$, or $NaNO_3$. It was found that the effect of the nitrate salt was significantly affected by the size of cation. The promoting effect of the nitrate salt increased with the decrease of the cation size: $LiNO_3$ ~ $NaNO_2$ > $KNO_3$ > $CsNO_3$ >> [1-butyl-3-methylimidazolium]$NO_3$. XRD analysis of the recovered catalysts after the hydrogenation reactions showed that $LiNO_3$ and $NaNO_2$ were completely transformed into LiOH and NaOH, respectively, along with the evolution of $NH_3$, while $KNO_3$ and $CsNO_3$ remained unchanged.

Characteristics of low-nitrite pork emulsified-sausages with paprika oleoresin solution during refrigerated storage

  • Kim, Geon Ho;Chin, Koo Bok
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.394-404
    • /
    • 2021
  • The objective of this study was to evaluate quality characteristics of low-nitrite emulsified-sausages (ESs, < 75 ppm) containing paprika oleoresin solution (POS) for replacing sodium nitrite (NaNO2). Pork ESs were prepared with four treatments (reference (REF), 150 ppm NaNO2; TRT1, 0 ppm NaNO2 + 0.1% POS; TRT2, 37.5 ppm NaNO2 + 0.1% POS; and TRT3, 75 ppm NaNO2 + 0.1% POS). The physicochemical and texture properties, microbial counts, residual nitrite and thiobarbituric acid reactant substances (TBARS) were measured during refrigerated storage of 35 days. Although TRT2 and TRT3 had lower levels of NaNO2, they had higher redness and yellowness than REF (p < 0.05). Microbial counts of total bacterial counts and Enterobacteriaceae of TRT2 and TRT3 were similar to those of REF (p > 0.05). Expressible moisture percentages (EM, %) of TRT2 and TRT3 were lower than those of REF (p < 0.05). TBARS values of TRT2 and TRT3 were not different from those of REF (p > 0.05). Among treatments, TRT1 had the highest TBARS values (p < 0.05). In conclusion, 0.1% POS in combination with 37.5 ppm NaNO2 would have quality characteristics similar to those of REF. Therefore, approximately 3/4 of the initial nitrite level could be replaced with 0.1% POS, and eventually developed healthier pork products.

Effects of concentrations and types of neutral salts on the foaming properties of sodium caseinate (중성염의 종류 및 농도가 sodium caseinate의 거품성에 미치는 영향)

  • Yang, Seung-Taek;Park, Hyung-Sun
    • Applied Biological Chemistry
    • /
    • v.36 no.6
    • /
    • pp.434-439
    • /
    • 1993
  • To investigate the effects of neutral salts on the foaming properties of sodium caseinate, turbidity, surface tension, absolute viscosity, foaming ability and foam stability of the caseinate solutions(5%, w/v) with added NaF, $Na_2SO_4$, NaCl, $NaNO_3$, and NaSCN at concentrations of 0.1, 0.5, 1.0, 1.5 and 2.0 M were examined. NaCl and $NaNO_3$ improved the foaming ability compared to sodium caseinate without salt, and also $Na_2SO_4$ and NaF did the foaming ability at the concentrations of 0.1M and 0.5M, while NaSCN did not improve the foaming ability. For foaming ability optimal concentrations of the salts were 0.5, 1.5, and 1.0 M in $Na_2SO_4$, NaCl, and NaSCN, respectively. Additions of $Na_2SO_4$, NaF and $NaNO_3$ at 0.5 M concentrations improved the foam stability of sodium caseinate by 825%, 615%, and 53% compared to control, while those of NaSCN reduced foam stability.

  • PDF