• Title/Summary/Keyword: $Na^+\-Ca^{2+}$ exchange

Search Result 209, Processing Time 0.03 seconds

Stoichiometry of $Ns^+/Ca^{2+}$ Exchange Quantified with Ion-selective Microelectrodes in Giant Excised Cardiac Membrane Patches

  • kang, Tong Mook;Hilgemann, Donald W.
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.30-30
    • /
    • 2003
  • Without a definitive resolution of stoichiometry of cardiac Na$^{+}$-Ca$^{2+}$exchange (NCX), we cannot proceed to any quantitative analysis of exchange function as well as cardiac excitation-contraction coupling. The stoichiometry of cardiac NCX, however, is presently in doubt because reversal potentials determined by various groups range between those expected for a 3-to-1 and a 4-to-1 flux coupling. For a new perspective on this problem, we have used ion-selective microelectrodes to quantify directly exchanger-mediated fluxes of $Ca^{2+}$and Na$^{+}$in giant membrane patches. $Ca^{2+}$- and Na$^{+}$-selective microelectrodes, fabricated from quartz capillaries, are placed inside of the patch pipettes to detect extracellular ion transients associated with exchange activity. Ion changes are monitored at various distances from the membrane, and the absolute ion fluxes through NCX are determined via simulations of ion diffusion and compared with standard ion fluxes (Ca$^{2+}$ fluxes mediated by $Ca^{2+}$ ionophore, and Na$^{+}$ fluxes through gramicidin channels and Na$^{+}$/K$^{+}$pumps). Both guinea pig myocytes and NCX1-expressing BHK cells were employed, and for both systems the calculated stoichiometries for inward and outward exchange currents range between 3.2- and 3.4-to-1. The coupling ratios do not change significantly when currents are varied by changing cytoplasmic [Ca$^{2+}$] or by adding cytoplasmic Na$^{+}$. The exchanger reversal potentials, measured in both systems under several ionic conditions, range from 3.1- to 3.3-to-1. Taken together, a clear discrepancy from a NCX stoichiometry of 3-to-1 was obtained. Further definitive experiments are required to acquire a fixed number, and the present working hypothesis is that NCX current has an extra current via ‘conduction mode’.ent via ‘conduction mode’.

  • PDF

[$Na^+-Ca^{2+}$ Exchange Curtails $Ca^{2+}$before Its Diffusion to Global $Ca^{2+}{_i}$ in the Rat Ventricular Myocyte

  • Ahn, Sung-Wan;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.95-101
    • /
    • 2005
  • In the heart, $Na^{+}-Ca^{2+}$ exchange (NCX) is the major $Ca^{2+}$ extrusion mechanism. NCX has been considered as a relaxation mechanism, as it reduces global $[Ca^{2+}]_i$ raised during activation. However, if NCX locates in the close proximity to the ryanodine receptor, then NCX would curtail $Ca^{2+}$ before its diffusion to global $Ca^{2+}_i$ This will result in a global $[Ca^{2+}]_i$ decrease especially during its ascending phase rather than descending phase. Therefore, NCX would decrease the myocardial contractility rather than inducing relaxation in the heart. This possibility was examined in this study by comparing NCX-induced extrusion of $Ca^{2+}$ after its release from SR in the presence and absence of global $Ca^{2+}_i$ transient in the isolated single rat ventricular myocytes by using patch-clamp technique in a whole-cell configuration. Global $Ca^{2+}_i$ transient was controlled by an internal dialysis with different concentrations of BAPTA added in the pipette. During stimulation with a ramp pulse from +100 mV to -100 mV for 200 ms, global $Ca^{2+}_i$ transient was suppressed only mildly, and completely at 1 mmol/L, and 10 mmol/L BAPTA, respectively. In these situations, ryanodine-sensitive inward NCX current was compared using $100{\mu}mol/L$ ryanodine, $Na^+$ depletion, 5 mmol/L $NaCl_2$ and $1{\mu}mol/L$ nifedipine. Surprisingly, the result showed that the ryanodine-sensitive inward NCX current was well preserved after 10 mmol/L BAPTA to 91 % of that obtained after 1 mmol/L BAPTA. From this result, it is concluded that most of the NCX-induced $Ca^{2+}$ extrusion occurs before the $Ca^{2+}$ diffuses to global $Ca^{2+})i$ in the rat ventricular myocyte.

Forward-Mode $Na^+-Ca^{2+}$ Exchange during Depolarization in the Rat Ventricular Myocytes with High EGTA

  • Kim, Eun-Gi;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.487-494
    • /
    • 2001
  • During depolarization, extrusion of $Ca^{2+}$ from sarcoplasmic reticulum through forward-mode $Na^+-Ca^{2+}$ exchange was studied in the rat ventricular myocytes patch-clamped in whole-cell configuration. In order to confine the $Ca^{2+}$ responses in a micro-domain by limiting the $Ca^{2+}$ diffusion time, rat ventricular myocytes were dialyzed with high (14 mM) EGTA. $K^+$ current was suppressed by substituting KCl with 105 mM CsCl and 20 mM TEA in the pipette filling solution and by omitting KCl in the external Tyrode solution. $Cl^-$ current was suppressed by adding 0.1 mM DIDS in the external Tyrode solution. During stimulation roughly mimicking action potential, the initial outward current was converted into inward current, $47{\pm}1%$ of which was suppressed by 0.1 mM $CdCl_2.$ 10 mM caffeine increased the remaining inward current after $CdCl_2$ in a cAMP-dependent manner. This caffeine-induced inward current was blocked by $1\;{\mu}M$ ryanodine, $10\;{\mu}M$ thapsigargin, 5 mM $NiCl_2,$ or by $Na^+\;and\;Ca^{2+}$ omission, but not by $0.1\;{\mu}M$ isoproterenol. The $I{\sim}V$ relationship of the caffeine-induced current elicited inward current from -45 mV to +3 mV with the peak at -25 mV. Taken together, it is concluded that, during activation of the rat ventricular myocyte, forward-mode $Na^+-Ca^{2+}$ exchange extrudes a fraction of $Ca^{2+}$ released from sarcoplasmic reticulum mainly by voltage-sensitive release mechanism in a micro-domain in the t-tubule, which is functionally separable from global $Ca^{2+}{_i}$ by EGTA.

  • PDF

$Na^{+}/Ca^{2+}$ Exchange System in Atrial Trabeculae and Vascular Smooth Muscle of the Rabbit (토끼 심방근 및 혈관 평활근에서의 $Na^{+}/Ca^{2+}$ 교환기전에 관한 연구)

  • Kim, Hee-Ju;Moon, Hyung-Ro;Earm, Yung-E;Ho, Won-Kyung
    • The Korean Journal of Physiology
    • /
    • v.22 no.1
    • /
    • pp.13-29
    • /
    • 1988
  • In order to elucidate the regulatory mechanism of intracellular calcium ion concentrations, contractions or contractures induced by $Na^{+}-removal$, calcium-application or ouabain-treatment as an index of $Na^+/Ca^{2+}$ exchange activity were studied in atrial muscle or vascular smooth muscle (aorta and renal artery) of the rabbit. The magnitude of low sodium contractures in atrial trabeculae increased with sigmoid shape when external sodium concentrations were reduced to sodium-free condition, whereas that of calcium contracture intensified in a parabolic pattern when external calcium concentrations were elevated to 8 mM. $Na^{+}-removal$ contractures were induced in a duration-dependent manner to $K^{+}-free$ exposure and same findings were observed with ouabain treatment. $Na^{+}-free$ contractures were not affected by verapamil treatment, but stimulated by $100{\mu}M\;Mn^{2+}$ and inhibited by high concentrations of $Mn^{2+}\;(2{\sim}8mM)$ in a dose-dependent manner. Ryanodine which is known to suppress the release of calcium from internal store abolished spontaneous twitch contractions induced by $K^{+}-free$ solution, but had no effect on the development $Na^{+}-free$ contractures. Na-free contractures were not always induced in vascular smooth muscle preparations. Contractures by $O\;mM\;Na^+$ were usually seen in aorta, but not often in renal artery.$50\;mM\;K^+$, noradrenaline (NA) and angiotensin II (AII) always evoked very large contraction in all preparations of vascular smooth muscle. Contractures developed by $O\;mM\;Na^+$ were not sensitive to verapamil treatment as in atrial trabeculae, but were abolished by $100{\mu}M\;Mn^{2+}$. In contrast to $Na^{+}-free$ contractures, $Mn^{2+}(100{\mu}M)$ had no effect on the contractures induced by NA or 50 mM$K^+$. Caffeine in the concentration of 10 mM evoked transient contracture in the distal renal artery. The rate of spontaneous relaxation in caffeine contracture was dependent upon the concentrations of external sodium, and had double component of relaxation when the rate of relaxation was plotted in the semilogarithmic scale of relative tension versus time. Especially late components of relaxation had more direct relation to $Na^+$ concentrations. It could be concluded that $Na^+/Ca^{2+}$ exchange mechanism in the heart has a large capacity, inhibited by $Mn^{2+}$ but not by verapamil and ryanodine, while $Na^+/Ca^{2+}$ exchange system in vascular smooth muscle has a very low capacity especially in small artery, inhibited by low concentration of $Mn^{2+}\;(100{\mu}M)$ but not affected by verapamil and ryanodine.

  • PDF

Studies on the Roles of $Na^+\;-Ca^{2+}$ Exchange according to Postnatal Age in the Negative Staircase Effect of the Rat Heart (흰쥐 심근의 역 사다리 효과에 있어서 생후 연령에 따른 $Na^+\;-Ca^{2+}$ 교환의 역할에 관한 연구)

  • Lee, Hae-Yong;Kim, Soon-Jin;Ko, Chang-Mann
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.707-716
    • /
    • 1997
  • Recent reports revealed that the $Na^+-Ca^{2+}$ exchangers and feet structures of sarcoplasmic reticulum(SR) are located in close vicinity in the specific compartment. Therefore, we investigated the possibility that the $Na^+-Ca^{2+}$ exchanger may decrease the tension development by transporting the $Ca^{2+}$ out of the cell right after it released from SR, on the basis of this anatomical proximity. We exammined the negative force-frequency relationship of the developed tension in the electrically field stimulated left atria of postnatal developing rat(1, 3 day, 1 week and 4 week old after birth). Cyclopiazonic $acid(3{\times}10^{-5}\;M)$ treatment decreased the developed tension further according to postnatal age. $Monensin(3{\times}10^{-6}\;M)$ treatment did not increase the maximal tension in 4 week-old rat, preserving negative staircase, while the negative staircase in the younger rat were flattened. $Ca^{2+}$ depletion in the buffer elicited more suppression of the maximal tension according to the frequency in all groups except the 4 week-old group. The % decrease of the maximal developed tension of 4 week-old group at 1 Hz to that of 0.1 Hz after $Na^+$ and $Ca^{2+}$ depletion was only a half of those of the yonger groups. Taken together, it is concluded that the $Na^+-Ca^{2+}$ exchange transports more $Ca^{2+}$ released from SR out of the cell in proportion to the frequency, and this is responsible for the negative staircase effect of the rat heart.

  • PDF

Effects of Bay K, cAMP and Isoprenaline on the Na-Ca Exchange Current of Single Rabbit Atrial Cells (토끼 심방근에서 Na-Ca 교환 전류에 대한 Bay K, cAMP, Isoprenaline 효과)

  • Ho, Won-Kyung;Earm, Yung-E
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.377-388
    • /
    • 1990
  • Ca movements during the late plateau phase in rabbit atrium implicate Na-Ca exchange. In single atrial cells isolated from the rabbit the properties of the inward current of Na-Ca exchange were investigated using the whole cell voltage clamp technique. The inward currents were recorded during repolarization following brief 2 ms depolarizing pulse to +40 mV from a holding potential of -70 mV. Followings are the results obtained: 1) When stimulated every 30 sec, the inward currents were activated and reached peak values $6{\sim}12\;ms$ after the beginning of depolarizing pulse. The mean current amplitude was 342 pA/cell. 2) The current decayed spontaneously from the peak activation and the timecourse of the relaxation showed two different phases: fast and slow phase. 3) The recovery of the inward current was tested by paired pulse of various interval. The peak current recovered exponentialy with a time course similar to that of Ca current recovery. 4) Relaxation timecourse was also affected by pulse interval and time constant was reduced almost linearly according to the decrease of pulse interval between 30 sec and 1 sec. 5) The peak inward current was increased by long prepulse stimulation, Bay K, isoprenaline or c-AMP. 6) The relaxation time constant of the inward current was prolonged by Bay K or c-AMP, and shortened by isoprenaline. From the above results, it could be concluded that increase of the calcium current potentiates and prolongs intracellular calcium transients, while shortening of the timecourse by isoprenaline or short interval stimulations might be due to the facilitation of Ca uptake by SR.

  • PDF

Evaluation of Exchange Capacities of Ca2+ and Mg2+ ions by Na-A Zeolite Synthesized from Coal Fly Ash (석탄비산재로 합성한 Na-A 제올라이트의 Ca2+와 Mg2+ 이온교환 성능평가)

  • Lee, Chang-Han;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.975-982
    • /
    • 2018
  • In this study, zeolite (Z-C1) was synthesized using a fusion/hydrothermal method from coal fly ash. The morphological structures of Z-C1 were confirmed to be highly crystalline with a cubic crystal structure. Exchange capacities of $Ca^{2+}$ and $Mg^{2+}$ ions in a single and a mixed solution reached equilibrium within 120 min. The exchange kinetics of these ions were well predicted by the pseudo-second-order rate equation. The exchange isotherms of the $Ca^{2+}$ and $Mg^{2+}$ ions matched the Langmuir isotherm better than the Freundlich isotherm. The maximum cation exchange capacities ($q_m$) obtained by the Langmuir isotherm model were 2.11 mmol/g (84.52 mg/L) and 1.13 mmol/g (27.39 mg/L) for the $Ca^{2+}$ and $Mg^{2+}$ ions, respectively.

Na-Ca Exchange in Sarcolemmal Vesicles Isolated from Cat Ileal Longitudinal Muscle (고양이 회장 종주근에서 Na-Ca 교환 기전의 특성에 관한 연구)

  • Woo, Jae-Suk;Suh, Duk-Joon;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.23 no.2
    • /
    • pp.237-252
    • /
    • 1989
  • Effect of a $Na^+$ gradient on $Ca^{2+}$ uptake was studied in isolated sarcolemmal vesicles of cat ileal longitudinal muscle. $Ca^{2+}$ uptake was markedly stimulated in the presence of an outwardly directed $Na^+$ gradient. External $Na^+$, monensin and A23187 abolished the $Na^+-dependent$ $Ca^{2+}$ uptake. Monovalent cations such as $K^+$, $Li^+$, $Rb^+$, $Cs^+$ and choline could not substitute for $Na^+$ in enhancement of $Ca^{2+}$ uptake. Divalent cations such as $Ba^{2+}$, $Sr^{2+}$, $Mn^{2+}$ and $Cd^{2+}$ but not $Mg^{2+}$ inhibited the $Na^+-dependent$ $Ca^{2+}$ uptake. Increase in external pH in the range of 6.0 to 8.0 stimulated the $Na^+-dependent$ $Ca^{2+}$ uptake. Amiloride inhibited the $Na^+-dependent$ $Ca^{2+}$ uptake at concentrations above 0.5 mM, whereas diltiazem or vanadate did not. The apparent Km of the $Na^+-dependent$ $Ca^{2+}$ uptake for $Ca^{2+}$ was 18.2 ${\mu}M$ and apparent Vmax was 689.7 pmole/mg protein/5 sec. Kinetic analysis of the $Na^+-dependent$ $Ca^{2+}$ uptake showed a noncompetitive interaction between internal $Na^+$ and external $Ca^{2+}$. The dependence of $Ca^{2+}$ uptake on internal $Na^+$ showed sigmoidal kinetics and Hill coefficient for internal $Na^+$ was 2.52. Inside positive membrane potential generated by imposing an inwardly directed $K^+$ gradient and valinomycin significantly stimulated the $Na^+-dependent$ $Ca^{2+}$ uptake. These results indicate that a $Na^+-Ca^{2+}$ exchange system exists in the sarcolemmal membranes isolated from cat ileal longitudinal muscle and it might operate as an electrogenic process.

  • PDF

The Calcium and Magnesium Ion-Exchange Properties of Snythetic δ-Na2Si2O5 from Water Glass (Water Glass로부터 합성한 δ-Na2Si2O5의 Ca2+, Mg2+ 이온교환성)

  • Jeong, Soon-Yong;Suh, Jeong-Kwon;Park, Jeong-Hwan;Doh, Myung-Ki;Koh, Jae-Cheon;Lee, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.406-412
    • /
    • 1994
  • The ion-exchange properties of $Ca^{2+}$ and $Mg^{2+}$ ions have been studied in ${\delta}-Na_2Si_2O_5$ synthesized from water glass. Results show that optimum temperature for synthesis of ${\delta}-Na_2Si_2O_5$ was $725^{\circ}C$. Ion-exchange isotherms for $Ca^{2+}$ and $Mg^{2+}$ exchange for $Na^+$ in the synthetic ${\delta}-Na_2Si_2O_5$ show that the ion-exchange capacity of magnesium is better than that of calcium, and the ion-exchange of magnesium is less sensitive for temperature than that of calcium. When initial pH of solution is increased between 2 and 6, the ion-exchange capacities of magnesium and calcium decrease a little. However, they are almost constant above pH 6 because of alkali buffer effect of ${\delta}-Na_2Si_2O_5$. In the thermodynamic studies, it was found that Gibbs free energies of reaction of calcium ion-exchange are larger than those of magnesium ion-exchange with inverse order of selectivity. The standard enthalpy and entropy of reaction of calcium ion-exchange are larger than those of magnesium ion-exchange.

  • PDF

Mechanisms of Contraction Induced by Sodium Depletion in the Rabbit Renal Artery

  • Kim, Se-Hoon;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.159-170
    • /
    • 1991
  • In the rabbit renal artery, mechanisms of contraction by sodium depletion were investigated. The helical strips of isolated renal artery were immersed in the Tris-buffered salt solution. The contractions were recorded isometrically using a strain-gauge transducer. Na-free solution (Na was substituted by Li, choline or sucrose) produced contractions which were dependent on the nature of the Na substitutes. Na-free solution (choline) produced the contraction in ouabain-pretreated artery (Na loaded artery) even in the presence of verapamil. The amplitude of the contraction was dependent on the duration of the pretreatment with ouabain $(10\;^5M)$. Monensin potentiated the effect of ouabain on the contraction. Removal of Ca from bathing solution abolished the contraction and the substitution of Sr for Ca produced the contraction. Divalent cations such as Mg, Mn blocked the depolarization-induced contraction, while they had little effect on the Na-free contraction in Na loaded artery. These results suggest that the contraction induced by Na removal is dependent on the cellular Na content and may be caused by Ca influx via the Na-Ca exchange carrier.

  • PDF