• Title/Summary/Keyword: $Na^+/K^+/2Cl^-$ (NKCC)

Search Result 3, Processing Time 0.015 seconds

Molecular Characterization and Expression Pattern of Na+-K+-2Cl- Cotransporter 2 (NKCC2) in the Intestine of Starry Flounder Platichthys stellatus after Bacterial Challenge

  • Kim, Yi Kyung;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.2
    • /
    • pp.173-181
    • /
    • 2015
  • We identified the $Na^+-K^+-2Cl^-$ cotransporter 2 (NKCC2) cDNA isoform from starry flounder, Platichthys stellate. The NKCC2 cDNA encoded a polypeptide of 1,043 amino acids representing 12 putative transmembrane domains based on the bioinformatic topology prediction. In addition, starry flounder NKCC2 possessed highly conserved residues within transmembrane domain 4, known as an essential site for its function. End-point reverse transcription-polymerase chain reaction analysis revealed that the NKCC2 transcript was moderately expressed only in the anterior and posterior intestines and the rectum. The NKCC2 mRNA level in the rectum, but not in other segments, was significantly induced 3 days post Streptococcus parauberis challenge, indicating that excess salt may be transported into the rectum. Taken together, our data indicate that an S. parauberis infection could tip the intestinal fluid balance in favor of fluid accumulation, indicating that bacterial pathogens can interfere with intestinal osmotic balance and normal mucosal immune homeostasis.

Pathophysiology of olive flounder Paralichthys olivaceus suffering from emaciation (여윔증 넙치, Paralichthys olivaceus의 증상에 대한 병태생리학적 고찰)

  • Kim, Yi-Kyung;Jeong, Joon-Bum;Lee, Mu-Kun;Park, Soo-Il;Park, Myeong-Ae;Choe, Mi-Kyung;Yeo, In-Kyu
    • Journal of fish pathology
    • /
    • v.24 no.1
    • /
    • pp.11-18
    • /
    • 2011
  • This study was aimed to investigate the pathophysiological changes of olive flounder, Paralichthys olivaceus suffering from emaciation. A plasma osmolality was higher in the emaciated and control flounders than that of normal teleost, suggesting osmoregulatory failure in both of them. Also, the control in the same stock with emaciated flounder seem to be classified into a primary degree of emaciation. According to microscopic observations, the inflammatory responses were observed in the submucosal layer of anterior intestine, although the some of mucosal intestinal epithelium still remained. It was suggested that the pathological changes of the anterior part give rise to malabsorption of nutrients through the mucosa. In the posterior intestine and rectum, the mucosal epithelium were almostly sloughed off and severe inflammatory responses were observed in the submucosa. Immunoreaction for NKCC was not detected in the mucosal epithelial cells in intestine because of sloughing of epithelium. These changes would lead to functional disorder in the intestine, such as malabsorption of nutrients and osmoregulatory failure. Also important is to investigate the recovery phase.

Gene Expression Profiles of Rainbow Trout Oncorhynchus mykiss after Salinity Challenge (염분 변화에 따른 무지개송어(Oncorhynchus mykiss)의 삼투조절 유전자 발현변화)

  • Choi, Young Kwang;Park, Heum Gi;Kim, Yi Kyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.676-684
    • /
    • 2021
  • Euryhaline teleost have extraordinary ability to deal with a wide range of salinity changes. To study the seawater adaptability of rainbow trout Oncorhynchus mykiss (body weight 638±54 g, length 38.6±2 cm) to salinity increase fish were transferred from freshwater to 7, 14, 21, 28 and 32 psu and checked for mortality over 5 days. No mortality was observed in 0-32 psu. In fish transferred to 0-32 psu, blood osmolality was maintained within physiological range. The changes of serum enzyme activities (aspartate transaminase, AST and alanine transaminase, ALT) showed no significant level during experimental period. To explore the underlying molecular physiology of gill and kidney responsible for body fluid regulation, we measured mRNA expression of five genes, Na+/K+/2Cl- cotransporter1 (NKCC1), aquaporin3 (AQP3), cystic fibrosis transmembrane conductance regulator (CFTR), glucocorticoid receptor (GR) and growth hormone receptor (GHR) in response to salt stress. Based on our result, rainbow trout could tolerate gradual transfer up to 32 psu for 5 days without mortality under physiological stress. This study suggests to alleviate osmotic stress to fish, a gradually acclimation to increasing salinity is recommended.