• Title/Summary/Keyword: $Na^+$ polystyrene-divinylbenzene sulfonated copolymerized membrane

Search Result 2, Processing Time 0.019 seconds

Selective transport characteristics of alkali metal ions through a cell membrane model which irradiated by γ-ray (감마선이 조사된 세포막모델을 통한 알칼리금속 이온의 선택적 전달 특성)

  • Ko, Inho;Yeo, Jindong
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.85-91
    • /
    • 2013
  • The selective transport characteristics of $K^+$ and $Na^+$ of cell membrane model which irradiated by 60Co ${\gamma}$-ray was investigated. The cell membrane model used in this experiment was a Na+ type sulfonated copolymerized membrane of styrene and divinylbenezene. The initial flux of the ion was increased with increase of both $H^+$ ion concentration. In this experiment range(pH 0.5-3, temperature $15-65^{\circ}C$), first, the selectivity of $K^+$ and the ratio K+/Na+ of membrane which was not irradiated was about 1.06 - 1.13 and second, that of K+ and the ratio $K^+/Na^+$ of membrane which was irradiated was near about 0. And the driving force of pH of irradiated membrane was significantly increased about 4-5 times than membrane which was not irradiated. As selective transport of K+ and Na+ of cell membrane model were abnormal, cell damages were appeared at cell.

Active Transport Characteristics of K+-Na+ Pumping System in Cell Membrane Model which Irradiated by High Energy X-ray (고에너지 엑스선을 조사한 세포막모델에서 K+-Na+ 펌프 시스템의 능동적 전달 특성)

  • Ko, In-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.157-165
    • /
    • 2017
  • The active transport characteristics of $K^+$ and $Na^+$ pumping system of cell membrane model which irradiated by high energy x-ray(linac 6MeV) was investigated. The cell membrane model used in this experiment was a $Na^+$ type sulfonated copolymerized membrane of styrene and divinylbenezene. The initial flux of the ion was increased with increase of both $H^+$ ion concentration. In this experiment range(pH 1.5-5, temperature $36.5^{\circ}C$), the initial flux of $K^+$ which was not irradiated by radiation was found to be from $2.09{\times}10^{-4}$ to $1.32{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $7.09{\times}10^{-4}$ to $1.09{\times}10^{-3}mole/cm^2{\cdot}h$. the initial flux of $K^+$ which was irradiated by radiation was found to be from $21.0{\times}10^{-4}$ to $16.7{\times}10^{-3}mole/cm^2{\cdot}h$ and that of $Na^+$ from $62.0{\times}10^{-4}$ to $20.6{\times}10^{-3}mole/cm^2{\cdot}h$. The ratio $K^+$/$Na^+$ of membrane was about 1.10. And the driving force of pH of irradiated membrane was significantly increased about 9-20 times than membrane which was not irradiated. As active transport of $K^+$ and $Na^+$ of cell membrane model were abnormal, cell damages were appeared at cell.