High-voltage dielectric discharges are an emerging technique in environmental pollutant degradation, which that are characterized by the production of hydroxyl radicals as the primary degradation species. The initiation and propagation of the electrical discharges depends on several physical, chemical, and electrical parameters such as 1st and 2nd voltage of power, gas supply, conductivity and pH. These parameters also influence the physical and chemical characteristics of the discharges, including the production of reactive species such as OH, $H_2O_2$ and $O_3$. The experimental results showed that the optimum 1st voltage and air flow rate for RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical) degradation were 160 V (2nd voltage of is 15 kV) and 4 L/min, respectively. As the increased of the 2nd voltage (4 kV to 15 kV), RNO degradation, $H_2O_2$ and $O_3$ generation were increased. The conductivity of the solution was not influencing the RNO degradation and $H_2O_2$ and $O_3$ generation. The effects pH was not high on RNO degradation. However, the lower pH and the conductivity, the higher $H_2O_2$ and $O_3$ generation were observed.
The Transactions of The Korean Institute of Electrical Engineers
/
v.61
no.11
/
pp.1646-1649
/
2012
The $O_2$ annealing technique has considerably suppressed the leakage current of GaN power devices, but this forms NiO at Ni-based Schottky contact with increasing on-resistance. The purpose of the present study was to fabricate 1.5 kV GaN Schottky barrier diodes by improving $O_2$-annealing process and GaN buffer. The proposed $O_2$ annealing performed after alloying ohmic contacts in order to avoid NiO construction. The ohmic contact resistance ($R_C$) was degraded from 0.43 to $3.42{\Omega}-mm$ after $O_2$ annealing at $800^{\circ}C$. We can decrease RC by lowering temperature of $O_2$ annealing. The isolation resistance of test structure which indicated the surface and buffer leakage current was significantly increased from $2.43{\times}10^7$ to $1.32{\times}10^{13}{\Omega}$ due to $O_2$ annealing. The improvement of isolation resistance can be caused by formation of group-III oxides on the surface. The leakage current of GaN Schottky barrier diode was also suppressed from $2.38{\times}10^{-5}$ to $1.68{\times}10^{-7}$ A/mm at -100 V by $O_2$ annealing. The GaN Schottky barrier diodes achieved the high breakdown voltage of 700, 1400, and 1530 V at the anode-cathode distance of 5, 10, and $20{\mu}m$, respectively. The optimized $O_2$ annealing and $4{\mu}m$-thick C-doped GaN buffer obtained the high breakdown voltage at short drift length. The proposed $O_2$ annealing is suitable for next-generation GaN power switches due to the simple process and the low the leakage current.
Decomposition behavior of $ferro-Si_3N_4$was investigated with varying temperature and holding time in mud components for high temperature refractory applications. Porosities gradually increased with increasing temperature and holding time due to the carbothermal reduction of $Si_3N_4\;and\;SiO_2$. Silicon monoxide (SiO) as a intermediate resulted from evaporation of $Si_3N_4\;and\;SiO_2$ reacted with C sources to generate needle-like ${\beta}-SiC$ and Fe in $Si_3N_4$ acted as a catalyst in order to enhance growth of SiC grain with the preferred orientation. SiC generation yield increased with increasing holding time, all of the $Si_3N_4\;and\;SiO_2$ affected on SiC formation up to 2h. However, SiC generation was only dependent on residual $SiO_2$ over 2h, because the carbothermal reduction reaction of $Si_3N_4$ was no longer possible at that time.
This work explored the characteristics and the photocatalytic activities of S element-doped $TiO_2$ (S-$TiO_2$) and N element-doped $TiO_2$ (N-$TiO_2$) for the decomposition of gas-phase isopropyl alcohol (IPA) at sub-ppm concentrations, using a plug-flow reactor irradiated by 8-W daylight lamp or visible light-emitting-diodes (LEDs). In addition, the generation yield of acetone during photocatalytic processes for IPA at sub-ppm levels was examined. The surface characteristics of prepared S- and N-$TiO_2$ photocatalysts were analyzed to indicate that they could be effectively activated by visible-light irradiation. Regarding both types of photocatalysts, the cleaning efficiency of IPA increased as the air flow rate (AFR) was decreased. The average cleaning efficiency determined via the S-$TiO_2$ system for the AFR of 2.0 L $min^{-1}$ was 39%, whereas it was close to 100% for the AFR of 0.1 L $min^{-1}$. Regarding the N-$TiO_2$ system, the average cleaning efficiency for the AFR of 2.0 L $min^{-1}$ was above 90%, whereas it was still close to 100% for the AFR of 0.1 L $min^{-1}$. In contrast to the cleaning efficiencies of IPA, both types of photocatalysts revealed a decreasing trend in the generation yields of acetone with decreasing the AFR. Consequently, the N-$TiO_2$ system was preferred for cleaning of sub-ppm IPA to S-$TiO_2$ system and should be operated under low AFR conditions to minimize the acetone generation. In addition, 8-W daylight lamp exhibited higher cleaning efficiency of IPA than for visible LEDs.
The diesel engine, which has high compression ratio than other heat engines, has been using as the main power source of marine transport. Especially, since marine diesel engines offer better specific fuel consumption (SFC), it is environment-friendly compared to those used in other industries. However, attentio should be focused on emissions such as nitrous oxide ($N_2O$) which is generated from combustion of low-grade fuels. Because $N_2O$ in the atmosphere is very stable, the global warming potential (GWP) of $N_2O$ is 310 times as large as that of $CO_2$, and it becomes a source of secondary contamination after photo-degradation in the stratosphere. It has been hitherto noted on the $N_2O$ exhaust characteristics from stationary power plants and land transportations, but reports on $N_2O$ emission from the marine diesel engine are very limited. In this experimental study, a author investigated $N_2O$ emission characteristics by using changed diesel fuel components of nitrogen and sulfur concentration, assessed on the factors which affect $N_2O$ generation in combustion. The experimental results showed that $N_2O$ emission exhibited increasement with increasing of sulfur concentration in fuel. However, all kinds of nitrogen component additives used in experiment could not change $N_2O$ emission.
This study evaluated the applicability of visible-light-driven N- and S-doped titanium dioxide($TiO_2$) for the control of low-level dimethyl sulfide(DMS) and dimethyl disulfide(DMDS). In addition, a photocatalytic unit(PU)-adsorption hybrid was evaluated in order to examine the removal of DMS and DMDS which exited the PU and a gaseous photocatalytic byproduct($SO_2$) which was generated during the photocatalytic processes. Fourier-Tranform-Infrared(FTIR) spectrum exhibited different surface characteristics among the three-types of catalysts. For the N- and S-doped $TiO_2$ powders, a shift of the absorbance spectrum towards the visible-light region was observed. The absorption edge for both the N- and S-doped $TiO_2$ was shifted to $\lambda$ 720 nm. The N-doped $TiO_2$ was superior to the S-doped $TiO_2$ in regards to DMS degradation. Under low input concentration(IC) conditions(0.039 and 0.027 ppm for DMS and DMDS, respectively), the N-doped $TiO_2$ revealed a high DMS removal efficiency(above 95%), but a gradual decreasing removal efficiency under high IC conditions(7.8 and 5.4 ppm for DMS and DMDS, respectively). Although the hybrid system exhibited a superior characteristic to PU alone regarding the removal efficiencies of both DMS and DMDS, this capability decreased during the course of a photocatalytic process under the high IC conditions. The present study identified the generation of sulfate ion on the catalyst surface and sulfur dioxide(maximum concentrations of 0.0019 and 0.0074 ppm for the photocatalytic processes of DMS and DMDS, respectively) in effluent gas of PU. However, this generation of $TiO_2$ would be an insignificant addition to indoor air quality levels.
Nitrous oxide ($N_2O$), known as one of the major greenhouse gases, is an important component of the earth's atmosphere, and gives rise to precursor of acid rain and photochemical smog. For the removal of $N_2O$ and other nitrogen oxides, the SCR reaction system with various reductants is widely used. This study is based on the results of experimental and theoretical examinations on the catalytic decomposition of sole nitrous oxide ($N_2O$) and selective catalytic reduction of $N_2O$ with $CH_4$ in the presence of oxygen using mixed metal oxide catalysts obtained from hydrolatcite-type precursors. When $CH_4$ is fed together with a reductant, it affects positively on the $N_2O$ decomposition activity. At an optimum ratio of $CH_4$ to $O_2$ mole ratio, the $N_2O$ conversion activity is enhanced on the SCR reaction with partial oxidation of methane.
This study has been carried out to evaluate the performance of $PbO_2$ electrode for the purpose of degradation of N,N-Dimethyl-4-nitrosoaniline (RNO, indicator of OH radical), generation of ozone and decolorization of Rhodamine B (RhB) in water. The effect of the applied current (0.2~1.2 A), electrolyte type (NaCl, KCl and $Na_2SO_4$), electrolyte concentration (0.0~2.5 g/L) and solution pH (3~11) were evaluated. Experimental results showed that RhB and RNO removal were increased with the increase of current, NaCl dosage and decrease of pH. Ozone generation tendencies appeared with the almost similar to the RhB and RNO degradation, except of solution pH (Ozone generation was increased with increase of pH). Optimum current for RhB degradation and consumption of electric power was 1.0 A. The RhB degradation with Cl type electrolyte were higher than that with the sulfate type. Optimum NaCl dosage for RhB degradation was 1.0 g/L.
Stored animal manure is considered as a significant agricultural source of methane $(CH_4)$ and nitrous oxide $(N_2O)$ which have 23 and 297 times higher global warming effect when compared to carbon dioxide $(CO_2)$. Uncertainties caused by lack of understanding physical and biochemical environment in stored animal manure and by errors of emission measurement methods, even though many researches measuring $CH_4\;and\;N_2O$ emissions from stored manure have been conducted for a few decades. In this paper, general information of $CH_4\;and\;N_2O$ generation and emissions from stored animal manure and the measurement methods for quantifying $CH_4\;and\;N_2O$ emissions are discussed.
This study carried out a laboratory scale plasma reactor about the characteristics of chemically oxidative species (${\cdot}OH$, $H_2O_2$ and $O_3$) produced in dielectric barrier discharge plasma. It was studied the influence of various parameters such as gas type, $1^{st}$ voltage, oxygen flow rate, electric conductivity and pH of solution for the generation of the oxidant. $H_2O_2$ and $O_3$.) $H_2O_2$ and $O_3$ was measured by direct assay using absorption spectrophotometry. OH radical was measured indirectly by measuring the degradation of the RNO (N-Dimethyl-4-nitrosoaniline, indicator of the generation of OH radical). The experimental results showed that the effect of influent gases on RNO degradation was ranked in the following order: oxygen > air >> argon. The optimum $1^{st}$ voltage for RNO degradation were 90 V. As the increased of $1^{st}$ voltage, generated $H_2O_2$ and $O_3$ concentration were increased. The intensity of the UV light emitted from oxygen-plasma discharge was lower than that of the sun light. The generated hydrogen peroxide concentration and ozone concentration was not high. Therefore it is suggested that the main mechanism of oxidation of the oxygen-plasma process is OH radical. The conductivity of the solution did not affected the generation of oxidative species. The higher pH, the lower $H_2O_2$ and $O_3$ generation were observed. However, RNO degradation was not varied with the change of the solution pH.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.