• 제목/요약/키워드: $N_2O$ emissions

검색결과 199건 처리시간 0.032초

Atmospheric CO2 enrichment reduces wheat nitrate utilization and enhances soil N2O emissions

  • Hu, Shuijin
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.4-4
    • /
    • 2017
  • Atmospheric carbon dioxide enrichment ($eCO_2$) often increases soil nitrous oxide ($N_2O$) emissions, but the underlying mechanisms are not fully understood. Emerging evidence suggests that $eCO_2$ alters plant N preference in favor of ammonium ($NH_4{^+}-N$) over nitrate ($NO_3{^-}-N$). Yet, whether and how this attributes to the enhancement of $N_2O$ emissions has not been investigated. We examined the effects of $eCO_2$ on soil $N_2O$ emissions in the presence of two N forms ($NH_4{^+}-N$ or $NO_3{^-}-N$), using wheat (Triticum aestivum L.) as a model plant. Our results showed that N forms dominated $eCO_2$ effects on plant and microbial N utilization, and thus soil $N_2O$ emissions. Elevated $CO_2$ significantly increased the rate and the sum of $N_2O$ emissions by three to four folds when $NO_3{^-}-N$, but not $NH_4{^+}-N$, was supplied. Enhanced $N_2O$ emission was related to the reduced plant $NO_3{^-}-N$ uptake in wheat. We propose a new conceptual model in which $eCO_2$-inhibition of plant $NO_3{^-}-N$ uptake and/or $CO_2$-enhancement of soil labile C enhances the N and/or C availability for denitrifiers and increases the intensity and/or the duration of $N_2O$ emissions. Together, these findings suggest that to enhance plant N use efficiency and reduce $N_2O$ emission, crop breeding and management need to consider altered plant preference of N sources under future $CO_2$ scenarios.

  • PDF

온도 변화에 따른 산지습지 토양의 $N_2O$ 배출 양상 ($N_2O$ Emissions on the Soil of Alpine Wetland by Temperature Change)

  • 김상훈;임성환;추연식
    • 생태와환경
    • /
    • 제46권3호
    • /
    • pp.409-418
    • /
    • 2013
  • 최근 기후변화에 따른 지구온난화는 전세계적으로 매우 큰 문제로 인식되고 있다. 이산화탄소의 농도, 온난화정도, 토양 온도, 강우량, 토양수분함량, 탈질작용 등과 같은 요인들은 토양으로부터 아산화질소 ($N_2O$)의 방출에 영향을 미치는 것으로 알려져 있다. 본 연구에서는 산지습지인 오대산 질뫼늪과 정족산 무체치늪 토양으로부터 온도변화에 따른 $N_2O$ 발생을 조사하였다. 7월 채취한 질뫼늪 토양은 온도가 증가함에 따라 $N_2O$ 발생이 증가하였으나 $10^{\circ}C$에서는 유의한 차이를 보이지 않았다. $15^{\circ}C$$20^{\circ}C$ 토양은 24시간까지는 증가하는 $N_2O$ 발생양상을 보였으나 그 이후 발생량의 뚜렷한 차이를 보이지 않았다, 전반적으로 온도처리에 따른 유의한 차이만을 보였다. 무제치늪 토양 또한 질뫼늪 토양과 유사한 경향을 보였다. 부가적인 질소원 처리에 대해 두 습지 토양은 다소 증가하는 양상을 보였으나 질소부가나 질소원에 따른 유의한 차이를 보이지 않았다. 결론적으로 이탄토양으로부터 배출하는 $N_2O$의 양은 온도가 상승함에 따라 증가되는 양상을 보였으나 질소원의 종류와 부가량은 $N_2O$ 배출 양상에 큰 차이를 보이지 않은 것으로 조사되었다. 향후 산지 이탄습지 토양의 $N_2O$ 배출양상을 보다 명확히 규명하기 위해서는 질소원의 차이, 질소의 시비, 토양효소 활성이나 질화세균의 활동성을 포함하여 다양한 요인에 대한 복합적인 연구가 진행될 필요가 있을 것이다.

밭 토양으로부터 아질산(N2O기체의 배출량 측정과 배출특성 (N2O Emissions from Agricultural Soils and Their Characteristics)

  • 김득수;오진만
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.529-540
    • /
    • 2003
  • A closed chamber system was used for measuring $N_2$0 fluxes from an agriculturally managed upland soil in Kunsan during the growing season from May to July 2002. It is known that soil is one dominant source of atmospheric $N_2$O, contributing to about 57% (9 Tg y $^{-1}$ ) of the total annual global emission. Hence, its increasing emissions and concentrations are largely associated with agricultural activities. In order to elucidate characteristics of soil nitrogen emissions from intensively managed agricultural soils and to understand the roles of soil parameters (soil moisture, soil pH, soil temperature, and soil nitrogen) in the gas emission, $N_2$O soil emissions were measured at every hour during the experimental period (21 days). Soil $N_2$O fluxes were calculated based on changes of $N_2$O concentrations measured inside a closed chamber at every hour. The analysis of $N_2$O was made by using a Gas Chromatography (equipped with Electron Capture Detector). Soil parameters at sampling plots were also analyzed. Monthly averaged $N_2$O fluxes during May, June, and July were 0.14, 0.05, and 0.13 mg-$N_2$O m$^{-2}$ h$^{-1}$ , respectively. Soil temperature and soil pH did not significantly vary over the experimental period; soil temperatures ranged from 12∼$25^{\circ}C$, and soil pH ranged 4.56∼4.75. However, soil moisture varied significantly from 32% to 56% in WFPS. Relationships between soil parameters and $N_2$O fluxes exhibited positive linear relationships. Strong positive correlation ($R^2$ = 0.57, P< 0.0001) was found between $N_2$O flux and sil moisture. It suggests that soil moisture has affected strongly soil $N_2$O emissions during the experimental periods, while other parameters have remained relatively at constant levels. $N_2$O flux from agricultural soils was significant and should be taken account for the national emission inventory.

챔버를 이용한 농작지로부터의 기체배출량의 측정과 배출특성연구: 일산화질소(NO)와 아질산가스($N_2O$)의 배출량산정 (Measurements of Gases Emissions form Agricultural Soils and Their Characteristics with Chamber Technique: Emissions of NO and $N_2O$)

  • 김득수
    • 한국대기환경학회지
    • /
    • 제17권2호
    • /
    • pp.203-212
    • /
    • 2001
  • During the growing season from June to August, 2000, the soil NO and $N_2$O fluxes were measured to elucidate characteristics of soil nitrogen emissions from different types of intensively managed agricultural soils at outskirts of Kunsan City, located in the western inland of Korea, Flux measurements were made using a closed chamber technique at two different agricultural fields; one was made from upland field, and the other from rice paddy field. The flux data from upland field were collected for both the green onion and soybean field. Concentrations of NO and $N_2$O inside a flux chamber ar 15 minute sampling interval were measured to determine their soil emissions. Either polyethylene syringes of teflon air bags were used for gas samples of $N_2$O and NO. The analysis of NO and $N_2$O was made using a chemiluminesence NO analyzer and GC-ECD, respectively no later than few hours after sample collection at laboratory. The gas fluxes were varied more than one standard deviation around their means. Relatively high soil gas emissions occurred in the aftermoon for both NO and $N_2$O. A sub-peak for $N_2$O emission was observed in the morning period, but not in the case of NO. NO emissions from rice paddy field were much less than those from upland site. It seems that water layer over the rice paddy field prevents gases from escaping from the soil surface covered with were during the irrigation and acts as a sink of these gases. The NO fluxes resulted from these field experiments were compared to those from grass soil and they were found to be much higher. Diurnal and daily variations of NO and $N_2$O emission were discussed and correlated with the effects of nitrogen fertilizer application on the increase of the level of soil nitrogen availability.

  • PDF

온실가스 배출량 산정 방법에 따른 N2O 배출량 비교 (Comparison of N2O Emissions by Greenhouse Gas Emission Estimation Method)

  • 강소영;조창상;김승진;강성민;윤현기;전의찬
    • 한국기후변화학회지
    • /
    • 제6권3호
    • /
    • pp.175-184
    • /
    • 2015
  • In this study GC and PAS were used to calculate $N_2O$ concentration of exhaust gas from Wood Chip combustion system. Fuel supplied to the incinerator was collected and analyzed and then the analysis result was used to calculate $N_2O$ emissions. Tier 3 and Tier 4 Method were used to calculate the $N_2O$ emissions. Plant's Specific emission factor of $N_2O$ by Tier 3 Method was 0.35 kg/TJ, while default emission factor of Wood?Wood Waste proposed by 2006 IPCC G/L was 4 kg/TJ. So the $N_2O$ emission factor of this study was 3.65 kg/TJ lower compared to the IPCC G/L. The total emissions calculated by Plant's specific emission factor was 4.22 kg during the measuring period, but by Tier 4 Method it was 7.88 kg. This difference in emissions was caused by the difference of continuous measuring and intermittent sampling. It would be necessary to apply continuous measuring to calculate emissions of $Non-CO_2$ gas whose the density distribution is relatively high. However currently, according to the target management guideline of greenhouse gas and energy, the continuous measuring method to calculate greenhouse gas emission is applied only to $CO_2$. Therefore for reliable greenhouse gas emission calculation it would be necessary to apply continuous measuring to calculate $Non-CO_2$ gas emission.

Assessment of Nitrous Oxide (N2O) Emissions from Farmland in 2011 with IPCC Guideline Methodology

  • Jeong, Hyun Cheol;Kim, Gun Yeob;Lee, Jong Sik;Choi, Eun Jung;Ko, Jee Yeon;So, Kyu Ho
    • 한국토양비료학회지
    • /
    • 제46권6호
    • /
    • pp.570-574
    • /
    • 2013
  • This study was conducted to assess $N_2O$ emissions in agricultural soils of Korea under the 1996 IPCC (Intergovernmental Panel on Climate Change) methodology. $N_2O$ emissions in agricultural soils were calculated the sum of direct emission and indirect emission by the N sources and emissions by field burning of crop residues. $N_2O$ emission was highest in animal manure as 1,547 $CO_2$-eq Gg. Indirect emissions by atmospheric deposition and leaching and runoff were 1,463 and 1,753 $CO_2$-eq Gg, respectively. $N_2O$ emission by field burning of crop residues was highest in pepper due to the residue/crop ratio and field burning ratio.

Variations of N2O by no tillage and conventional-tillage practices under the different kinds of fertilizer applications on the cultivation of soybean in Korea

  • Yoo, Jin;Oh, Eun-Ji;Kim, Suk-Jin;Woo, Sun-Hee;Chung, Keun-Yook
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.314-314
    • /
    • 2017
  • Anthropogenic activities have increased the concentrations of greenhouse gases, such as $CO_2$, $CH_4$, $N_2O$, HFCs, $SF_6$, and PFCs, in the atmosphere. Among others, $N_2O$ is well known as an important greenhouse gas accounting for 7.9% of the total greenhouse effect and the effect of its emission is 310 times greater than that of $CO_2$. Agricultural $N_2O$ emissions are now thought to contribute to about 60% of the global anthropogenic $N_2O$ emission, which have been increased primarily due to fertilizer N consumption and manure management. Therefore, the reduction of $N_2O$ emissions in agriculture is being required. This study was conducted to determine the variation of $N_2O$ emissions by no-tillage (NT) and conventional tillage (CT) practices in the cultivation of soybean from the sandy loam soils under the different kinds of fertilizer treatments June through September 2016 in Cheong-ju, Republic of Korea. An experimental plot, located in the temperate climate zone, was composed of two main plots that were NT and CT, and were divided into four plots, respectively, in accordance with types of fertilizers (chemical fertilizer, liquid pig manure, hairy vetch and non-fertilizer). Among all the treatments, $N_2O$ emission was the highest in August and the lowest in June. When $N_2O$ emissions were evaluated during the growing season (June to September) in all fertilizer treatments, NT with hairy vetch treatment emitted the highest $N_2O$ emission in August, whereas, $N_2O$ emissions was the lowest in NT with non-fertilizer treatment in June, respectively (p = 0.05). Based on the cumulative amount of $N_2O$ emissions during the growing season of soybean, NT had lower $N_2O$ emission than CT by 0.01 - 0.02 kg $N_2O$, although NT had higher $N_2O$ emission than CT by 0.03 kg $N_2O$ in only the chemical fertilizer treatments. As a result, it seems that the applications of liquid pig manure and hairy vetch rather than chemical fertilizer could decrease the $N_2O$ emission in NT, compared to CT.

  • PDF

Factors Affecting and Techniques to Quantify $CH_4\;and\;N_2O$ Emissions from Stored Liquid Manure

  • Park, K.H.;Wagner-Riddle, Claudia
    • 한국축산시설환경학회지
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2007
  • Stored animal manure is considered as a significant agricultural source of methane $(CH_4)$ and nitrous oxide $(N_2O)$ which have 23 and 297 times higher global warming effect when compared to carbon dioxide $(CO_2)$. Uncertainties caused by lack of understanding physical and biochemical environment in stored animal manure and by errors of emission measurement methods, even though many researches measuring $CH_4\;and\;N_2O$ emissions from stored manure have been conducted for a few decades. In this paper, general information of $CH_4\;and\;N_2O$ generation and emissions from stored animal manure and the measurement methods for quantifying $CH_4\;and\;N_2O$ emissions are discussed.

  • PDF

2009년 우리나라 농경지 토양에서의 N2O 배출량 평가 (Assessment on Nitrous oxide (N2O) Emissions of Korea Agricultural Soils in 2009)

  • 정현철;김건엽;이덕배;심교문;이슬비;강기경
    • 한국토양비료학회지
    • /
    • 제44권6호
    • /
    • pp.1207-1213
    • /
    • 2011
  • 우리나라 농경지에서의 $N_2O$ 배출량을 1996과 2006 IPCC 방법론에 준하여 직접배출과 간접배출로 구분하여 산정하였다. 배출량 산정을 위한 활동자료는 농림수산식품부의 농림수산식품통계연보를 활용하였고, 배출계수는 1996 IPCC와 2006 IPCC에서 제시하고 있는 기본계수를 활용하였다. 직접배출량을 질소 투입원별로 산정한 결과 논과 밭에서 화학비료 시용에 의한 $N_2O$ 배출량은 각각 159,579 $CO_2$-eq Mg과 976,460 $CO_2$-eq Mg이었고, 축산분뇨 시용에 따른 $N_2O$ 배출량은 1,465,363 $CO_2$-eq Mg이었다. 두과작물의 질소 고정에 따른 $N_2O$ 배출량은 52,395 $CO_2$-eq Mg이었고, 작물잔사 환원에 의한 $N_2O$ 배출량은 14,562 $CO_2$-eq Mg 이었다. 간접배출에 의한 $N_2O$ 배출량을 대기 유출과 수계 유출로 구분하여 산정된 양은 각각 1,415,881 $CO_2$-eq Mg과 1,864,043 Mg이었다. 우리나라 농경지의 $N_2O$ 총배출량은 5,948,284 $CO_2$-eq Mg으로 직접배출량은 44.9%, 간접배출량은 55.1%를 차지하였으며, 경종부문 온실가스 전체 배출량의 48.7%를 점유하였다.

INVESTIGATION OF EMISSION RATES OF AMMONIA, NITROUS OXIDE AND OTHER EXHAUST COMPOUNDS FROM ALTERNATIVE- FUEL VEHICLES USING A CHASSIS DYNAMOMETER

  • Huai, T.;Durbin, T.-D.;Rhee, S.-H.;Norbeck, J.-M.
    • International Journal of Automotive Technology
    • /
    • 제4권1호
    • /
    • pp.9-19
    • /
    • 2003
  • Exhaust emissions were characterized for a fleet of 10 alternative-fuel vehicles (AFVx) including 5 compressed natural gas (CNG) vehicles. 3 liquefied petroleum gas (LPG) vehicles and 2 85% methanol/15% California Phase 2 gasoline (M85) vehicles. In addition to the standard regulated emissions and detailed speciation of organic gas compounds, Fourier Transform Infrared Spectroscopy (FTIR) was used to measure ammonia (NH$_3$) and nitrous oxide ($N_2$O) emissions. NH$_3$, emissions averaged 0.124 g/mi for the vehicle fleet with a range from <0.004 to 0.540 g/mi. $N_2$O emissions averaged 0.022 g/mi over the vehicle fleet with range from <0.002 to 0.077 g/mi. Modal emissions showed that both NH$_3$, and $N_2$O emissions began during catalyst light-off and continued as the catalyst reached its operating temperature. $N_2$O emissions primarily were formed during the initial stages of catalyst light-off. Detailed speciation measurements showed that the principal component of the fuel was also the primary organic gas species found in the exhaust. In particular, methane, propane and methanol composed on average 93%, 79%, and 75% of the organic gas emissions, respectively, for the CNG, LPG. and M85 vehicles.