• Title/Summary/Keyword: $N_2O$ 촉매 분해

Search Result 98, Processing Time 0.021 seconds

Study on the Characteristics of Nitrous Oxide Catalytic Decomposition (아산화질소 촉매 분해 특성 연구)

  • Yong, Sung-Ju;Park, Dae-Il;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.58-61
    • /
    • 2009
  • The characteristics of nitrous oxide catalytic decomposition were studied to utilize the nitrous oxide as a propellant. The Ru and Pt were selected as nitrous oxide decomposition catalysts and loaded in the $Al_2O_3$ support using an impregnation method. The nitrous oxide conversions as a variation of GHSV and reaction temperature were measured in a tubular reactor. At the low GHSV and high temperature, the conversion was increased, and Ru/$Al_2O_3$ catalyst showed better performance than Pt/$Al_2O_3$ catalyst.

  • PDF

Effects of Ceria and CO Reductant on $N_2O$ Decomposition over the Layered Mixed Oxide Catalysts (층상 혼합금속산화물 촉매에 의한 $N_2O$ 분해에서 Ceria 첨가 및 CO 환원제의 영향)

  • Yang, Ki-Seon;Chang, Kil-Sang
    • Clean Technology
    • /
    • v.16 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • Nitrous oxide ($N_2O$) is a greenhouse material which is hard to remove. Even with a catalytic process it requires a reaction temperature, at least, higher than 670 K. This study has been performed to see the effects of Ce addition to the mixed oxide catalyst which shows the highest activity in decomposing $N_2O$ completely at temperature as low as 473 K when CO is used as a reducing agent. Mixed metal oxide(MMO) catalyst was made through co-precipitation process with small amount of Ce added to the base components of Co, Al and Rh or Pd. Consequently, the surface area of the catalyst decreased with the contents of Ce, and the catalytic activity of direct decomposition of $N_2O$ also decreased. However, in the presence of CO, the activity was found high enough to compensate the portion of activity decrease by Ce addition, so that it can be ascertained that the catalytic activity and stability can be maintained in the CO involved $N_2O$ reduction system when Ce is added for the physical stability of the catalyst.

The Effects of SO2 and NH3 on the N2O Reduction with CO over MMO Catalyst (MMO 촉매와 CO 환원제에 의한 N2O 분해에서 SO2 및 NH3 영향 연구)

  • Chang, Kil Sang;You, Kyung-Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.653-657
    • /
    • 2009
  • Nitrous oxide is a typical greenhouse gas which is produced from various organic or fossil fuel combustion processes as well as chemicals producing plants. $N_2O$ has a global worming potential of 310 times that of $CO_2$ on per molecule basis, and also acts as an ozone depleting material in the stratosphere. However, its removal is not easy for its chemical stability characteristics. Most SCR processes with several effective reducing agents generally require the operation temperature higher than $450^{\circ}C$, and the catalytic conversion becomes decreased significantly when NOx is present in the stream. Present experiments have been performed to obtain basic design data of actual application concerning the effects of $SO_2$ and $NH_3$ on the interim and long term activities of $N_2O$ reduction with CO over the mixed metal oxide (MMO) catalyst derived from a hydrotalcite-like compound precursor. The MMO catalysts used in the experiments, have shown prominent activities displaying full conversions of $N_2O$ near $200^{\circ}C$ when CO is introduced. The presence of $SO_2$ is considered to show no critical behavior as can be met in the $NH_3$ SCR DeNOx systems and the effect of $NH_3$ is considered to play as mere an impurity to share the active sites of the catalysts.

N2O Decomposition Characteristics of Dual Bed Mixed Metal Oxide Catalytic System using Partial Oxidation of Methane (메탄의 부분산화를 이용한 이중 혼합금속산화물 촉매 반응시스템의 N2O 분해 특성 연구)

  • Lee, Nan Young;Woo, Je-Wan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • $N_2O$ decomposition characteristics of dual bed mixed metal oxide catalytic system was investigated. The partial oxidation of methane at first reactor of dual bed catalytic system was performed over Co-Rh-Al (1/0.2/1) catalyst under the optimized condition of $8,000h^{-1}$ GHSV, gas ratio ($CH_4:O_2=5:1$) at $500^{\circ}C$. In the dual bed system investigated herein, the second catalyst bed was employed for the $N_2O$ decomposition using product of partial oxidation of methane at first bed. An excellent $N_2O$ conversion activity even at lower temperature ($<250^{\circ}C$) was obtained with Co-Rh-Al (1/0.2/1) or Co-Rh-Zr-Al (1/0.2/0.3/1) catalyst by combining Co-Rh-Al (1/0.2/1) hydrotalcite catalyst for the partial oxidation of methane in a dual-bed system. The $N_2O$ conversion activity is drastically reduced in the presence of oxygen in second bed of a dual-bed system over Co-Rh-Al (1/0.2/1) catalyst at $300^{\circ}C$.

Effect of Fe Ion-Exchanged BEA Zeolite Catalysts on N2O Decomposition Reaction Following Heat-treatment Temperatures (Fe 이온이 담지된 BEA 제올라이트 촉매의 열처리 온도에 따른 N2O 분해반응에 대한 영향)

  • Jeong, Gi-Rim;Lee, Seung-Jae;Ryu, In-Soo;Moon, Seung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.531-535
    • /
    • 2013
  • The effect of heat-treatment temperature on the activity of catalysts was studied by investigating $N_2O$ decomposition reaction in Fe ion-supported BEA Zeolite. As a result of $N_2O$ decomposition reaction experiment, $N_2O$ decomposition activity significantly decreased as heat-treatment temperature of Fe/BEA catalyst increased. the shape and size of the particles of Fe/BEA catalyst following the rise of heat-treatment temperature did not display a significant change. But following the rise of the heat-treatment temperature, its surface area was significantly reduced. Also it was confirmed that as the heat-treatment temperature rose, the crystallization of ${\beta}$ structure was greatly reduced. And as heat-treatment temperature rose, while SiO structure either increased or did not exhibit much change, the structure of Fe bonded with lattice structure was speculated to decrease. From the stated results, it was concluded that the increase of heat-treatment temperature became the cause of the declined activity of catalysts by destruction of its ${\beta}$ structure of bonding aluminium and Fe atoms.

Doped TiO2와 coupled TiO2 제조 및 다양한 광원하의 유기물 분해 특성 평가

  • Lee, Gyu-Sang;Mun, Ji-Yeon;Kim, Seon-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.227.1-227.1
    • /
    • 2015
  • 산업이 발달하면서 다양한 화학물질이 배출되고 이로 인하여 환경이 오염되고 있으며, 특히, 대부분의 유기 화합물은 대기오염에 많은 영향을 주는 물질로 알려져 있다. 최근 유기 화합물을 제거하기 위해서 UV와 가시광에서 반응하는 광촉매 연구가 진행되고 있다. 본 연구에서는 밴드갭에 변화를 주는 doped $TiO_2$와 가시광에서 반응하는 조촉매를 이용하여 광촉매의 특성을 향상시키는 coupled $TiO_2$를 제조하였다. Doped $TiO_2$를 제조하기 위해서 비금속 물질인 질소(nitrogen)을 사용하였고, coupled $TiO_2$는 graphine oxide(GO)를 환원하여 $TiO_2$-RGO 촉매를 제조하였다. N-$TiO_2$$TiO_2$-RGO의 광학 특성을 평가하기 위해서 UV/Vis 분광광도계를 사용하였다. Methylene blue(MB)와 methyl orange(MO)가 분해되는 반응을 통해서 N-$TiO_2$$TiO_2$-RGO의 광촉매 특성을 평가하였다. 또한, MB와 MO 분해 테스트에 395 nm long pass filter를 이용하여 가시광에서의 광촉매 활성을 평가하였다.

  • PDF

Study on 1,200 N-class bipropellant rocket engine using decomposed $H_2O_2$ and kerosene (분해된 과산화수소와 케로신을 이용한 1,200 N 급 이원추진제 로켓 엔진의 연구)

  • Jo, Sung-Kwon;An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Sung;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.69-78
    • /
    • 2010
  • As part of preliminary study for development of 1,200 N-class bipropellant rocket engine with the concentrated hydrogen peroxide, bipropellant engine elements were designed and experimentally tested. The catalysts of $MnO_2$ and $MnO_2$ added Pb as an additive were compared to achieve high decomposition performance and the catalytic reactor with $MnO_2$ added Pb was designed and its decomposition efficiency of 97.2% was achieved. The autoignition tests of kerosene by decomposed hydrogen peroxide were carried out under various equivalence ratios to ignite without additional ignition sources. Autoignition were achieved in all experimental conditions and $C^*$ efficiencies at each condition were at or above 90%. From the measured thrust results, the highest value was 830 N which is in corresponds with 1,035 N at vacuum level assuming $C^*$ efficiency equals $I_{sp}$ efficiency.

Study on 1,200 N-class bipropellant rocket engine using decomposed $H_2O_2$ and kerosene (분해된 과산화수소와 케로신을 이용한 1,200 N 급 이원추진제 로켓 엔진의 연구)

  • Jo, Sung-Kwon;An, Sung-Yong;Kim, Jong-Hak;Yoon, Ho-Sung;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.156-164
    • /
    • 2010
  • As part of preliminary study for development of 1,200 N-class bipropellant rocket engine with the concentrated hydrogen peroxide, bipropellant engine elements were designed and experimentally tested. The catalysts of $MnO_2$ and $MnO_2$ added Pb as an addictive were compared to achieve high decomposition performance and the catalytic reactor with $MnO_2$ added Pb was designed and its decomposition efficiency of 97.2% was achieved. The autoignition tests of kerosene by decomposed hydrogen peroxide were carried out under various equivalence ratios to ignite without additional ignition sources. Autoignition were achieved in all experimental conditions and $C^*$ efficiencies at each condition were at or above 90%. From the measured thrust results, the highest value was 830 N which is in corresponds with 1,035 N at vacuum level using 94.1% theoretical $I_{sp}$.

  • PDF

Comparative Reaction Characteristics of Methane Selective Catalytic Reduction with CO Generation Effect in the N2O Decomposition over Mixed Metal Oxide Catalysts (MMO 촉매 하에서 N2O 분해에 대한 메탄 SCR 반응 및 CO 생성 효과의 비교 연구)

  • Park, Sun Joo;Park, Yong Sung
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.624-628
    • /
    • 2008
  • Nitrous oxide ($N_2O$), known as one of the major greenhouse gases, is an important component of the earth's atmosphere, and gives rise to precursor of acid rain and photochemical smog. For the removal of $N_2O$ and other nitrogen oxides, the SCR reaction system with various reductants is widely used. This study is based on the results of experimental and theoretical examinations on the catalytic decomposition of sole nitrous oxide ($N_2O$) and selective catalytic reduction of $N_2O$ with $CH_4$ in the presence of oxygen using mixed metal oxide catalysts obtained from hydrolatcite-type precursors. When $CH_4$ is fed together with a reductant, it affects positively on the $N_2O$ decomposition activity. At an optimum ratio of $CH_4$ to $O_2$ mole ratio, the $N_2O$ conversion activity is enhanced on the SCR reaction with partial oxidation of methane.

$CO_2$Decomposition Properties of Ternary Ferrites Synthesized by the Wet Processing (습식 합성법으로 제조한 3원계 페라이트의 $CO_2$분해 특성 연구)

  • 안정률;배동식;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.10
    • /
    • pp.962-967
    • /
    • 2000
  • 산소 결핍 페라이트 (oxygen deficient ferrites, ODF) MF $e_2$ $O_{4-}$$\delta$/는 약 30$0^{\circ}C$의 낮은 온도에서 온실가스중 하나인 $CO_2$를 C와 $O_2$로 분해시킨다. 본 연구에서는 $CO_2$분해 촉매로서 3원계 초미세 페라이트 N $i_{x}$Z $n_{1-x}$F $e_2$ $O_4$와 N $i_{x}$ $Co_{1-x}$F $e_2$ $O_4$를 수열합성법과 공침법 등의 습식 합성법으로 각각 합성하여 이들 분말의 특성과 $CO_2$분해 특성을 고찰하였다. 페라이트의 XRD 결과, 결정구조는 모두 전형적인 스피넬 구조로 동일하게 나타났다. BET 비표면적은 수열합성법으로 제조한 3원계 페라이트의 경우 110$m^2$/g 이상으로 공침법으로 제조한 페라이트보다 비교적 큰 값을 나타냈고 분말 입자크기 또한 약 10nm의 매우 미세한 분말을 얻을 수 있었다. 3원계 산소 결핍 페라이트의 $CO_2$분해 효율은 공침법으로 합성한 것보다 수열합성법으로 합성한 것이 더 우수하게 나타났으며, N $i_{x}$ $Co_{1-x}$F $e_2$ $O_{4-}$$\delta$/보다 N $i_{x}$Z $n_{1-x}$F $e_2$ $O_{4-}$$\delta$/가 우수한 것으로 나타났다.

  • PDF