• Title/Summary/Keyword: $N_2/O_2$

Search Result 11,051, Processing Time 0.043 seconds

Depletion Kinetics of Ground State FeO Molecules by $O_2, N_2O, and \;N_2$

  • Son, H. S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.583-587
    • /
    • 2000
  • Depletion kinetics of ground state FeO molecules by $0_2$, $N_2O$ and $N_2$ has been studied at room temperature. The ground state FeO molecules were generated by photolysis of a $Fe$(CO)_5$/M(O_2$, $N_2O)/He$ mixture using an unfocused weak UV laser beam. The formation of ground state FeO molecules was identified by a laser-induced fluorescence (LIF) method. The intensity distribution of those undisturbed rotational lines suggests that the rotational temperature of the ground state FeO molecules is lower than room temperature. The LIF intensities of FeO molecules at different partial pressures of $0_2$, $N_2O$ and $N_2$ were monitored as a function of the time delay between the photolysis and probe laser pulses to obtain the depletion rate constants for the ground state FeO. They were 1.7+ 0.2x $10^{-12}$, 4.8 $\pm0.4$ x $10^{-12}$, and $1.4\pm$ 0.2x $10^{-12}cm^3$molecule^{-1}s^{-1}$$ by $0_2$, $N_20$, and $N_2$, respectively.

A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas (고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구)

  • Lee, Han Min;Yun, Jae Geun;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

Theoretical Investigation for the Structures and Binding Energies of H2O3 and Water (H2O) Clusters (H2O3과 물(H2O) 클러스터들의 분자구조와 열역학적 안정성에 대한 이론적 연구)

  • Seo, Hyun-il;Kim, Jong-Min;Song, Hui-Sung;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.328-338
    • /
    • 2017
  • The density functional theory(DFT) and ab initio calculations have been applied to investigate hydrogen interaction of $H_2O_3(H_2O)_n$ clusters(n=1-5). The structures, IR spectra, and H-bonding energies are calculated at various levels of theory. The $trans-H_2O_3$ monomer is predicted to be thermodynamically more stable than cis form at the CCSD(T)/cc-pVTZ level of theory. For clusters, the geometries are optimized at the MP2/cc-pVTZ level of theory. The binding energy of $H_2O_3-H_2O$ cluster is predicted to be -6.39 kcal/mol at the CCSD(T)//MP2/cc-pVTZ level of theory after zero-point vibrational energy (ZPVE) and basis set superposition error (BSSE) correction. This result implies that $H_2O_3$ is a stronger proton donor(acid) than either $H_2O$ or $H_2O_2$. The average binding energies per $H_2O$ are predicted to be 8.25 kcal/mol for n=2, 7.22 kcal/mol for n=3, 8.50 kcal/mol for n=4, and 8.16 kcal/mol for n=5.

Studies on the Metal Complexes with the Tetradentate Schiff Base Ligand (네자리 Schiff Base 리간드의 금속착물에 관한 연구)

  • Chjo Ki Hyung;Oh Sang-Oh;Kim Chan-ho
    • Journal of the Korean Chemical Society
    • /
    • v.18 no.3
    • /
    • pp.194-201
    • /
    • 1974
  • The tetradentate schiff base ligand, N,N'-bis(salicylaldehyde)-m-phenylenediimine has been prepared from salicylaldehyde and m-phenylenediamine by Duff-reaction. The schiff base ligand has been reacted with Cu(II), Ni(II), Co(II), and Zn(II) to form new complexes; Cu(II)$[C_{20}H_{14}O_2N_2]{\cdot}2H_2O, Ni(II)[C_{20}H_{14}O_2N_2]{\cdot}2H_2O, Co(III)[C_{20}H_{14}O_2N_2]{\cdot}2H_2O and Zn(II)2[C_{20}H_{14}O_2N_2]{\cdot}4H_2O$. It seems to be that the Cu(II), Ni(II) and Co(II) complexes have hexacoordinated configuration with the schiff base and two molecules of water, while Zn(II) complex has tetracoordinated configuration with the schiff base and four molecules of water. The mole ratio of tetradentate schiff base ligand to Cu(II), Ni(II) and Co(II) are 1:1 but to Zn(II) is 1:2. These complexes have been identified by visible spectra, infrared spectra, T.G.A. and elemental analysis.

  • PDF

Synthesis of New N2O2 Tetradentate Ligands and Determination of Stability Constants of Metal Complexes for Removal of Heavy Metals (중금속 이온 분리를 위한 새로운 네 자리 N2O2계 리간드의 합성 및 착 화합물의 안정도상수 결정)

  • Kim, Sun-Deuk;Kim, Jun-Kwang;Lee, Kyung-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.8
    • /
    • pp.913-920
    • /
    • 2007
  • Hydrochloride acid salts of new $N_2O_2$ tetradentate ligands containing amine and phenol N,N'-bis(2-hydroxybenzyl)-o-phenylenediamine(H-BHP), N,N'-bis(5-bromo-2-hydroxybenzyl)-o-phenylenediamine(Br-BHP), N,N'-bis(5-chloro-2-hydroxybenzyl)-o-phenylene-diamine(Cl-BHP), N,N'-bis(5-methyl-2-hydroxybenzyl)-o-phenylene-diamine (Me-BHP) and N,N'-bis(5-methoxy-2-hydroxybenzyl)-o-phenylenediamine(MeO-BHP) were synthesized. The ligands were characterized by elemental analysis, mass and NMR spectroscopy. The elemental analysis showed that the ligands were isolated as dihydrochloride salt. The potentiometry study revealed that the proton dissociation constants$(logK_n{^H})$ of ligands and stability constants $(logK_{ML})$ of transition and heavy metals complexes. The order of the stability constants of each metal ions for ligands was Br-BHP < Cl-BHP > H-BHP < MeO-BHP < Me-BHP.

High Temperature Properties of $Si_3N_4-Re$Silicon Oxynitride (Re=Y, Yb, Er, La) Ceramics

  • Park, Heon-Jin;Lee, June-Gunn;Kim, Young-Wook;Cho, Kyeong-Sik
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.211-216
    • /
    • 1999
  • Four different $\beta-Si_3N_4$ ceramics with silicon oxynitrides $[Y_10(SiO_4)_6N_2, Yb_4Si_2N_2O_7, Er_2Si_3N_4O_3, \;and La_{10}(SiO_4)_6N_2$, respectivley] as secondary phases have been fabricated by hot-pressing the $Si_3N_4-Re_4Si_2N_2O_7$ (Re=Y, Yb, Er, and La) compositions at $1820^{\circ}C$ for 2h under a pressure of 25 MPa. The high temperature strength and oxidation behavior of the hot-pressed ceramics were characterized and compared with those of the ceramics fabricated from $Si_3N_4-Si_2O_7$ compositions. The $Si_3N_4-Re_4Si_2N_2O_7$composition investigated herein showed comparable high temperature strength to those from $Si_3N_4-Re_2Si_2O_7$ compositions. Si3N4 ceramics from a $Si_3N_4-Y_4Si_2N_2O_7$ composition showed the highest strength of 877 MPa at $1200^{\circ}C$ among the compositions. All $Si_3N_4$ ceramics investigated herein showed a parabolic weight gain with oxidation time at $1400^{\circ}C$ and the oxidation products of the ceramics were $SiO_2$ and $Re_2Si_2O_7$. The $Si_3N_4-Re_4Si_2N_2O_7$ compositions showed inferior oxidation resistance to those from $Si_3n_4-Re_2Si_2O_7$ compositions, owing to the incompatibility of the secondary crystalline phases of those ceramics with $SiO_2$, the oxidation product of Si3N4.Si3N4 ceramics from a $Si_3N_4-Er_4Si_2N_2O_7$ composition showed the best oxidation resistance of 0.375mg/$\textrm{cm}^2$ after oxidation at $1400^{\circ}C$ for 102 h in air among the compositions.

  • PDF

A study on γ-Al2O3 Catalyst for N2O Decomposition (N2O 분해를 위한 γ-Al2O3 촉매에 관한 연구)

  • Eun-Han Lee;Tae-Woo Kim;Segi Byun;Doo-Won Seo;Hyo-Jung Hwang;Jueun Baek;Eui-Soon Jeong;Hansung Kim;Shin-Kun Ryi
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.126-134
    • /
    • 2023
  • Direct catalytic decomposition is a promising method for controlling the emission of nitrous oxide (N2O) from the semiconductor and display industries. In this study, a γ-Al2O3 catalyst was developed to reduce N2O emissions by a catalytic decomposition reaction. The γ-Al2O3 catalyst was prepared by an extrusion method using boehmite powder, and a N2O decomposition test was performed using a catalyst reactor that was approximately 25.4 mm (1 in) in diameter packed with approximately 5 mm of catalysts. The N2O decomposition tests were carried out with approximately 1% N2O at 550 to 750 ℃, an ambient pressure, and a GHSV=1800-2000 h-1. To confirm the N2O decomposition properties and the effect of O2 and steam on the N2O decomposition, nitrogen, air, and air and steam were used as atmospheric gases. The catalytic decomposition tests showed that the 1% N2O had almost completely disappeared at 700 ℃ in an N2 atmosphere. However, air and steam decreased the conversion rate drastically. The long term stability test carried out under an N2 atmosphere at 700 ℃ for 350 h showed that the N2O conversion rate remained very stable, confirming no catalytic activity changes. From the results of the N2O decomposition tests and long-term stability test, it is expected that the prepared γ-Al2O3 catalyst can be used to reduce N2O emissions from several industries including the semiconductor, display, and nitric acid manufacturing industry.

Effect of Si3N4 Buffer Layer on Transmittance of TiO2/Si3N4/Ag/Si3N4/TiO2 Multi Layered Structure (TiO2/Si3N4/Ag/Si3N4/TiO2 다층구조에서 Si3N4 버퍼층이 투과율에 미치는 영향)

  • Lee, Seo-Hee;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.44-47
    • /
    • 2012
  • The $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ multi layered structure was designed for the possible application of transparent electrodes in PDP (Plasma Display Panel). Multi layered film was deposited on a glass substrate at room temperature by DC/RF magnetron sputtering system and EMP (Essential Macleod Program) was adopted to optimize the optical characteristics of film. During the deposition process, the Ag layer in $TiO_2/Ag/TiO_2$ became heavily oxidized and the filter characteristic was degraded easily. In thus study, Si3N4 layer was used as a diffusion buffer layer between $TiO_2$ and Ag. in order to prevent the oxidation of Ag layer in $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ structure. It was confirmed that $Si_3N_4$ layer is one of candidate materials acting as diffusin barrier between $TiO_2/Ag/TiO_2$.

N,N'-Dimethylethylenediamine-N,N'-di-α-butyric Acid Cobalt(III) Complexes Utilizing Oxidation of Sulfur of S-Methyl-L-cysteine

  • Kim, Hyun-Jin;Youm, Kyoung-Tae;Yang, Jung-Sung;Jun, Moo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.851-856
    • /
    • 2002
  • The Reaction of S-methyl-S-cysteine(L-Smc) with racemic $s-cis-[Co(demba)Cl_2]-1$ (Hydmedba = $NN'-dimethylethylenediamine-NN'-di-\alpha-butyric$, acid) yields ${\Delta}$-s-cis-[Co(dmedba)(L-Smc)] 2 with N, O-chelation. Oxidation of sulfur of 2 with $H_2O_2$ in a 1 : 1 mole ratio gives ${\Delta}$-s-cis[Co(dmedba)(L-S(O)mc)] 3 having an uncoordinated sulfenate group. Oxidation of sulfur of L-Sm with $H_2O_2in$ a 1: 1 mole ratio produces S-methyl-L-cysteinesulfenate (L-S(O)me) 5. Direct reaction of 1 with 5 in basic medium gives an N.O-chelated ${\Delta}$s-cis[Co(dmedba)(L-S(O)mc)-N.O], which turmed out be same as obtained by oxidation of 2, while an N, S-chelated ${\Delta}$-s-cis-[Co(dmedba)(S-S(O)mc)-N,O] complex 4 is obtained in acidic medium from the reaction of 1 with 5. This is one of the rare $[$Co^{III}$(N_2O_2-type$ ligand)(amino acid)] type complex preparations, where the reaction conditions determine which mode of N, O and N, S caelation modes is favored.

Theoretical Study of the Interaction of N2O with Pd(110)

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2369-2376
    • /
    • 2007
  • N2O has been found from experimental and theoretical considerations to bind on-top to the Pd(110) surface in a tilted end-on fashion via its terminal N atom. We use a frontier orbital description of the bonding interactions in the Pd-N2O system to obtain molecular insight into the catalytic mechanism of the activation of N2O by the Pd(110) surface giving rise to the formation of N2 and O on the surface. For the tilted end-on N2O binding mode, the LUMO 3π of N2O has good overlap with the Pd dσ and dπ orbitals which can serve as the electron donors. The donor-acceptor orbital overlap is favorable for electron transfer from Pd to N2O and is expected to dominate the surface reaction pathway of N2O decomposition.