• Title/Summary/Keyword: $N_2$N

Search Result 57,538, Processing Time 0.077 seconds

Embedding Algorithm between [ 22n-k×2k] Torus and HFN(n,n), HCN(n,n) ([ 22n-k×2k] 토러스와 HFN(n,n), HCN(n,n) 사이의 임베딩 알고리즘)

  • Kim, Jong-Seok;Kang, Min-Sik
    • The KIPS Transactions:PartA
    • /
    • v.14A no.6
    • /
    • pp.327-332
    • /
    • 2007
  • In this paper, we will analysis embedding between $2^{2n-k}{\times}2^k$ torus and interconnection networks HFN(n,n), HCN(n,n). First, we will prove that $2^{2n-k}{\times}2^k$ torus can be embedded into HFN(n,n) with dilation 3, congestion 4 and the average dilation is less than 2. And we will show that $2^{2n-k}{\times}2^k$ torus can be embedded into HCN(n,n) with dilation 3 and the average dilation is less than 2. Also, we will prove that interconnection networks HFN(n,n) and HCN(n,n) can be embedded into $2^{2n-k}{\times}2^k$ torus with dilation O(n). These results mean so many developed algorithms in torus can be used efficiently in HFN(n,n) and HCN(n,n).

A taxonomic study of Korean Artemisia L. using somatic chromosome numbers (한국산 쑥속의 체세포 염색체수에 의한 분류학적 연구)

  • Park, Myung Soon;Jang, Jin;Chung, Gyu Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.39 no.4
    • /
    • pp.247-253
    • /
    • 2009
  • Somatic chromosome numbers for 20 taxa of Korean Artemisia L. were investigated for the purpose of classification. Somatic chromosome numbers of treated taxa were 2n = 16, 18, 34, 36, 50, 52, 54, and therefore their basic chromosome numbers were x = 8, 9, 10, 13, 17. The chromosome number of A. japonica var. angustissima is being reported for the first time in this study. The chromosome numbers of 13 taxa were the same as in previous reports; A. capillaris (2n = 18), A. japonica var. hallaisanensis (2n = 36), A. japonica subsp. littoricola (2n = 36), A. annua (2n = 18), A. carvifolia (2n = 18), A. fukudo (2n = 16), A. keiskeana (2n = 18), A. stolonifera (2n = 36), A. sylvatica(2n = 16), A. selengensis (2n = 36), A. montana (2n = 52), A. lancea (2n = 16), A. sieversiana (2n = 18); however, the chromosome numbers of 6 taxa were different; A. japonica var. japonica (2n = 18, 36 vs 2n = 36), A. sacrorum (2n = 18, 54 vs 2n = 54), A. rubripes (2n = 16, 34 vs 2n = 16), A. indica (2n = 34, 36 vs 2n = 34), A. codonocephala (2n = 18, 50, 54 vs 2n = 50), A. argyi (2n = 34, 36, 50 vs 2n =34). The somatic chromosome numbers of Korean Artemisia are thought to be good characteristics for classifying some taxa such as A. japonica var. japonica, A. sacrorum, A. codonocephala, A. argyi, A. montana, A. sylvatica.

Embedding Algorithms of Hierarchical Folded HyperStar Network (계층적 폴디드 하이퍼스타 네트워크의 임베딩 알고리즘)

  • Kim, Jong-Seok;Lee, Hyeong-Ok;Kim, Sung-Won
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.299-306
    • /
    • 2009
  • Hierarchical Folded HyperStar Network has lower network cost than HCN(n,n) and HFN(n,n) which are hierarchical networks with the same number of nodes. In this paper, we analyze embedding between Hierarchical Folded HyperStar HFH($C_n,C_n$) and Hypercube, HCN(n,n), HFN(n,n). The results of embedding are that HCN(n,n), HFN(n,n) and Hypercube $Q_{2n}$ can be embedded into HFH($C_n,C_n$) with expansion $\frac{C^n}{2^{2n}}$ and dilation 2, 3, and 4, respectively. Also, HFH($C_n,C_n$) can be embedded into HFN(2n,2n) with dilation 1. These results mean so many developed algorithms in Hypercube, HCN(n,n), HFN(n,n) can be used efficiently in HFH($C_n,C_n$).

Studies on the synthesis and antibacterial action of $N^4$-furoylsulfonamides ($N^4$-furoylsulfanamide류의 합성및 항균작용에 관한 연구)

  • 고현기
    • YAKHAK HOEJI
    • /
    • v.13 no.2_3
    • /
    • pp.62-66
    • /
    • 1969
  • Ten new N$^{4}$-furoylsulfonamides were synthesized such as N$^{4}$-furoyl-N$^{1}$-(4,6-dimethyl-2-pyrimidinyl) sulfanilamide (I), N$^{4}$-furoylsulfanilamide (II), N$^{4}$-furoyl-N$^{1}$-(2,6-dimethoxy-4-pyrimidinyl) sulfanilamide (III), N$^{4}$-furoyl-N$^{1}$-(4-methyl-2-pyrimidinyl) sulfanilamide (IV), N$^{4}$-furoyl-N$^{1}$-(6-methoxy-3-pyridazinyl) sulfanilamide (V), N$^{4}$-furoyl-N$^{1}$-2-pyrimidinylsulfanilamide (VI), N$^{4}$-furoyl-N$^{1}$-(3,4-dimethyl-5-isoxazolyl) sulfanilamide (VII), N$^{4}$-furoyl-N$^{1}$-2-thiazoilysulfanilamide (VIII), N$^{4}$-furoyl-N$^{1}$-(5-methoxy-2-pyrimidinyl) sulfanilamide (IX) and N$^{4}$-furoyl-N$^{1}$-(2,6-dimethyl-4-pyrimidinyl) sulfanilamide (X). They were obtained by the action of N$^{1}$-(4,6-dimethyl-2-pyrimidinyl) sulfanilamide, N$^{1}$-(2,6-dimethoxy-4-pyrimidinyl) sulfanilamide, N$^{1}$-(4-methyl-2-pyrimidinyl) sulfanilamide, N$^{1}$-(6-methoxy-3-pyridazinyl) sulfanilamide, N-2-pyrimidinyl sulfanilamide, N$^{1}$-(3,4-dimethyl-5-isoxazolyl) sulfanilamide, N$^{1}$-2-(thiazolysulfanilamide), N$^{1}$-(5-methoxy-2-pyrimidinyl) sulfanilamide and N$^{1}$-(2,6-dimethyl-4-pyrimidinyl) sulfanilamide with furoyl chloride in 4% NaOH solution. Of the above ten compounds, N$^{4}$-furoylsulfathiazole exhibited a good antibacterial action against Staphylococeus aureus and Escherichia coli.

  • PDF

Analysis of Bisection width and Fault Diameter for Hyper-Star Network HS(2n, n) (상호연결망 하이퍼-스타 HS(2n, n)의 이분할 에지수와 고장지름 분석)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • The KIPS Transactions:PartA
    • /
    • v.12A no.6 s.96
    • /
    • pp.499-506
    • /
    • 2005
  • Recently, Hyper-Star network HS(m,k) which improves the network cost of hypercube has been proposed. In this paper, we show that the bisection width of regular Hyper-Star network HS(2n,n) is maximum (2n-2,n-1). Using the concept of container, we also show that k-wide diameter of HS(2n,n) is less than dist(u,v)+4, and the fault diameter is less than D(HS(2n,n))+2, where dist(u,v) is the shortest path length between any two nodes u and v in HS(2n,n), and D(HS(2n,n)) is its diameter.

The Stability Constant of Transition and Lanthanide Metal Ions Complexes with 15 Membered Macrocyclic Azacrown Ligands (거대고리 아자크라운화합물과 전이금속 및 란탄족금속이온의 착물의 안정도)

  • Hong, Choon-Pyo;Choi, Yong-Gu;Choppin, G.R.
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.6
    • /
    • pp.577-582
    • /
    • 2004
  • The azacrown compounds, 1,4-dioxa-7,10,13-triazacyclopentadecane-N,N',N''-triacetic acid, $N-ac_3[15]aneN_3O_2(II_a)$ and 1,4-dioxa-7,10,13-triazacyclopentadecane-N,N',N''-tripropioc acid, $N-pr_3[15]aneN_3O_2(II_b)$ were synthesized by modified methods. Potentiometry was used to determine the protonation constant of the $N-ac_3[15]aneN_3O_2\;and\;N-pr_3[15]aneN_3O_2$. The stability constants of complexes of the trivalent metal ions of $Ce^{3+},\;Eu^{3+},Gd^{3+},and\;Yb^{3+}$ and divalent metal ions of $Co^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Zn^{2+}$ with the ligands $N-ac_3[15]aneN_3O_2\;and\;N-pr_3[15]aneN_3O_2$ have been determined at $25{\pm}0.1^{\circ}C$ in 0.1 M $NaClO_4$ solution by potentiometric methods. The metal ion affinities of the two triazamacrocyclic ligands with three pendant acetate or propionate groups are compared to those obtained for the similar ligands, 1,7-dioxa-4,10,13-triazacyclopentadecane-N,N',N''-triacetic acid, and 1,7-dioxa-4,10,13- triazacyclopentadecane-N,N',N''-tripropioc acid. The trends in stability of complexes for different metal ions due to changes in the nitrogen position of the donor atoms of the ligand are discussed.

Analysis of Topological Properties for Folded Hyper-Star FHS(2n,n) (Folded 하이퍼-스타 FHS(2n,n)의 위상적 성질 분석)

  • Kim, Jong-Seok
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.263-268
    • /
    • 2007
  • In this paper, we analyze some topological properties of Folded Hyper-Star FHS(2n,n). First, we prove that FHS(2n,n) has maximal fault tolerance, and broadcasting time using double rooted spanning tree is 2n-1. Also we show that FHS(2n,n) can be embedded into Folded hypercube with dilation 1, and Folded hypercube can be embedded into FHS(2n,n) ith dilation 2 and congestion 1.

A Study on the Preparation of new Functionalized Aminosilanes as a Promising Coupling Agent(I) (결합제로서 가능성 있는 새로운 작용기를 갖는 Aminosilane 제조에 관한 연구(I))

  • 한정식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.47-53
    • /
    • 1998
  • Using Michael Reaction, commercially available 3-aminopropyltrimethoxysilane and N-[3-(trimethoxysilyl)propuyl]ethylenediamine were reacted with various Michael acceptors, ethyl acrylate, acrylonitrile, acrylamide, 2-cyanoethyl acrylate, 2-hydroxyethyl acrylate and 3-(trimethoxysilyl)propylmethacrylate, to the new aminosilanes. All compounds which are [3-(N-2-carboethoxyethyl)aminopropyl]triethoxysilane, [3-(N-2-cyanoethyl)aminopropyl]triethoxysilane, [3-(N-di-2-car-boethoxyethyl)aminopropyl]triethoxysilane, [3-N-di-cyanoethyl) aminopropyl]triethoxysilane, [3-(N-2-cyanoethoxypropionyl)aminopropyl]triethoxysilane, [3-(N-di-2-cyanoethoxypropionyl)aminopropyl]triethoxysilane, [3-(N-di-2-hydroxyethoxy propionyl)aminopropyl]triethoxysilane, [3-(N-2-amidoethyl)aminopropyl]triethoxysil-ane,{3-[N-(N-di-2-cyanoethyl)ethyl]aminopropyl}triethoxysilane and {3-[N-(3-trimethoxysilylpropyl)-2-methylpropionyl]aminopropyl}triethoxysilane were succes-sfully prepared in 35-70% yields and which were identified with $^1{H}$-NMR and FT-IR spectroscopy.

  • PDF

THE GENERALIZATION OF CLEMENT'S THEOREM ON PAIRS OF PRIMES

  • Lee, Heon-Soo;Park, Yeon-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.89-96
    • /
    • 2009
  • In this article, we show a generalization of Clement's theorem on the pair of primes. For any integers n and k, integers n and n + 2k are a pair of primes if and only if 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) whenever (n, (2k)!) = (n + 2k, (2k)!) = 1. Especially, n or n + 2k is a composite number, a pair (n, n + 2k), for which 2k(2k)![(n - 1)! + 1] + ((2k)! - 1)n ${\equiv}$ 0 (mod n(n + 2k)) is called a pair of pseudoprimes for any positive integer k. We have pairs of pseudorimes (n, n + 2k) with $n{\leq}5{\times}10^4$ for each positive integer $k(4{\leq}k{\leq}10)$.

  • PDF

Fault Diameter of Folded Hyper-Star Interconnection Networks FHS(2n,n) (상호연결망 폴디드 하이퍼-스타 연결망 FHS(2n,n)의 고장 지름)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • The KIPS Transactions:PartA
    • /
    • v.17A no.1
    • /
    • pp.1-8
    • /
    • 2010
  • The fault diameter is one of the important measures for transmission rate and reliability of interconnection network. H.-O. Lee et al.[Parallel paths in folded hyper-star graph, Journal of KIPS, Vol.6, No.7, pp.1756-1769, 1999] suggested the node-disjoint paths of FHS (2n,n), and proved that the fault diameter of FHS(2n,n) is less than 2n-1. In this paper, we suggest an advanced node-disjoint paths of FHS(2n,n). We also prove that the wide diameter of FHS(2n,n) is dist(U,V)+4, and the fault diameter of FHS(2n,n) is less than n+2.