• Title/Summary/Keyword: $NO_x$Concentration

Search Result 628, Processing Time 0.027 seconds

Emission Characteristics of a Passing Two-stroke Scooter using at a Roadside Measurement (도로변 측정을 이용한 2행정 스쿠터의 대기오염물질 배출특성 연구)

  • Woo, Dae-Kwang;Lee, Seung-Bok;Bae, Gwi-Nam;Lim, Cheol-Soo;Kim, Tae-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.663-671
    • /
    • 2011
  • Although a scooter is a convenient transportation means for a short distance traveling with a light package in the congested urban center, it might be one of the significant sources of air pollutants to which many people can easily be exposed during its passing-by. In this paper, we measured concentrations of gases and particles emitted from a scooter at roadside with no other traffic. To understand the characteristics of scooter emissions with respect to driving speed (idling, 30 km/h) at the roadside, total particle number concentration, particle size distribution, average surface area of particles deposited in the alveolar region, and concentrations of black carbon, CO, and $NO_x$ were measured. The concentrations of the particle number, surface area of deposited particles, CO, and $NO_x$ were highly fluctuated in the scooter's idling condition. The trends of particle number concentration, CO, and $NO_x$ generation were similar to one another. When the scooter started to move, all of $NO_x$, CO and particle number concentrations increased and after it passed by at the speed of 30 km/h, the concentration peaks of the particles and gases appeared at the same time. Unimodal size distribution with ~70 and ~93 nm mode diameters was observed for the idling and cruising condition, respectively. From this work, we found that emission from a passing vehicle could be characterized using a roadside monitoring technique.

X-joint stress concentration of offshore wind turbine jacket support structures (해상 풍력 발전 Jacket 지지구조물의 X-joint 응력 집중 현상)

  • Lee, Jusang;Park, Hyunchul;Shi, Wei;Lee, Jongsun;Beak, Jaeha
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • Due to less turbulence and no land limitation, offshore wind energy gets more attention than onshore. Jacket structure is regarded as a suitable solution for the water depth ranging from 30 to 80 meters. In general, joint stress concentration of jacket support structures affects their fatigue life. Nowadays, most jacket structures for offshore wind turbines have tubular X-joint between legs. In this paper, a study on X-joint stress concentration of offshore wind turbine jacket structure is performed by using 50m water depth model. Stress of X-joint on offshore environmental conditions are discussed.

  • PDF

NOx and CO Emission Characteristics of Porous Inert Medium Burner (다공물질 연소기의 NOx 및 CO 배출 특성)

  • 임인권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.559-567
    • /
    • 1995
  • The combustion process within a porous inert medium (PIM) burner is numerical studied. A detailed chemical reaction scheme including thermal and prompt NO$_{x}$ reactions is used to predict the formation and destruction of pollutants such as NO$_{x}$ and CO. The reaction paths for NO$_{x}$ formation are divided to quantify the amount of NO$_{x}$ formed through thermal NO$_{x}$ reaction or through prompt NO$_{x}$ reaction. Emission index is calculated to compare the actual mass of NO$_{x}$ or CO produced through the combustion of unit mass of fuel. It is found NO formation in PIM burner is confined in flame zone and formation is suppressed due to heat loss at down-stream of the flame. Higher production of NO through prompt NO reaction path is observed due to the higher concentration of fuel derivative species and its higher diffusion at flame front. For all equivalence ratios, CO emission within PIM burner is lower than that from the one-dimensional freely-propagating flame. PIM burner flame has better NO$_{x}$ emission index from .psi. = 0.75 to .psi. = 1.1. to .psi. = 1.1.

An Experimental Study on the NH3-SCR of NOx over a Vanadium-based Catlayst (바나듐 계열 촉매를 통한 NOx의 NH3-SCR에 관한 실험적 연구)

  • Jeong, Hee-Chan;Sim, Sung-Min;Kim, Young-Deuk;Jeong, Soo-Jin;Kim, Woo-Seung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • The $NH_3$-SCR characteristics of $NO_X$ over a V-based catalyst are experimentally examined over a wide range of operating conditions, i.e., $170-590^{\circ}C$ and $30,000-50,000h^{-1}$, with a simulated diesel exhaust containing $NH_3$, NO, $NO_2$, $O_2$, $H_2O$, and $N_2$. The influences of the space velocity and oxygen concentration on the standard-SCR reaction are analyzed, and it is shown that the low space velocity and high oxygen concentration promote the SCR activity by ammonia. The best $deNO_X$ efficiency is obtained with a $NO_2/NO_X$ ratio of 0.5 because of an enhanced chemical activity induced by the fast-SCR reaction, while at the $NO_2/NO_X$ ratios above 0.5 the $deNO_x$ activity decreases due to the slow-SCR reaction. The oxidation of ammonia begins to take place at about $300^{\circ}C$ and the reaction products, such as $N_2$, NO, $NO_2$, $N_2O$, and $H_2O$, are produced by the undesirable oxidation reactions of ammonia, particularly at high temperatures above $450^{\circ}C$. Also, $NO_2$ decomposes to NO and $O_2$ at temperatures above $240^{\circ}C$. Therefore, $NO_2$ decomposition and ammonia oxidation reactions deteriorate significantly the SCR catalytic activity at high temperatures.

Removal Characteristics of Nitrogen Oxides (NOx) in Low Concentration using Peat-Mixed Media (피트(peat) 혼합담체를 이용한 저농도 질소산화물(NOx) 제거특성)

  • Kang, Young-Heoun;Kim, Deok-Woo;Kang, Seon-Hong;Kwon, Pil-Joo;Kim, Dal-Woo;Hwang, Pil-Gi;Shim, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.330-338
    • /
    • 2010
  • In this study, removal characteristics of nitrogen oxides $(NO_x)$ from road transport by using peat as the packing media for biodegradation have been investigated in the long term. Physicochemical and biological treatment of peatmixed media eliminates any requirement to use chemical substances and also facilitates the biodegradable actions of microorganism. Safe biodegradation of pollutants, no need to apply additional microbes owing to their active growth, and no generation of secondary pollutants were found in this experiment. It was concluded that average removal efficiencies of nitric oxide (NO) and nitrogen dioxide $(NO_2)$ were 80% and 97% respectively with respect to the linear velocity 35~40 mm/s and 0.3 ppm ozone concentration in the long period operation. Inflow concentration of nitric oxide over 0.05 ppm was suitable when pretreated with ozone. Non-ozone stage was performed with linear velocity 20~100 mm/s and then the average removal efficiency of nitric oxide and nitrogen dioxide were 38% and 94% respectively. Other results showed that the apparent static pressure was raised with increases in applied water content and aerial velocity in mixed media during fan operation.

Removal of $NO_x$ by using of $TiB_2$ Photocatalysis ($TiB_2$ 광촉매를 이용한 $NO_x$ 제거)

  • Lee, Yong-Hwan;Choi, Im-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.4
    • /
    • pp.112-115
    • /
    • 2009
  • This research was performed to purify water quality through removing T-N, and T-P and to estimating rate of $NO_x$ by the response of photocatalyst using ceramics. The ceramics was a mixtures of Titanium Diboride($TiB_2$) which is used to develop armored cars with excellent protective power and lightness, Olivine, and Hwangto with water and was furnaced for an hour at $1160^{\circ}C$. Hwangto and Olivine used in the study are produced at Haenam-gun, Jeonnam, and Andong-city, Gyeongsangbuk-do, respectively. The ground Hwangto and Olivine were seived through PR $100{\times}200$, and $TiB_2$ was a product of SIGMA ALDRICH. The experiment was performed under the sunlight, Mass flow controller was used for constant flow to pass through the pyrex reactor which was fully charged with furnaced ceramics. The concentration of $NO_2$ gas passed through the pyrex reactor was measured by Multi Gas Monitor. The reaction took for 60 minutes, The material was exposed to sunlight for 40 minutes. The sunlight was interrupted before and after the exposure for 10 minutes. The result showed that the concentration of $NO_2$ gas of the ceramics with $TiB_2$ and without $TiB_2$ became reduced and then maintained the same concentration under the sunlight, and became increased when the sunlight is interrupted. The $NO_2$ removing efficiency of the ceramics mixed with $TiB_2$ was 14~43% higher than that of the ceramics without $TiB_2$ under the sunlight. The study showed that the removing rate of $NO_2$ was 80% when the mixture rate of Hwangto, Olivine, and $TiB_2$ was 68%, 30% and 2%.

A Study of Optimal Mixture Fraction of Soil Bio-Filter for Removing NOX (질소산화물 제거를 위한 최적 토양 바이오 필터 혼합비 도출에 관한 연구)

  • Cho, Ki-Chul;Lee, Nae-Hyun
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1247-1255
    • /
    • 2007
  • Soil biofiltration is an environmentally-sound technology for elimination of VOCs, odorous and $NO_X$ compounds from a low concentration, high volume waste gas streams because of its simplicity and cost-effectiveness. This study investigated the optimal mixture fraction of briquet ash, compost, soil and loess for $NO_X$ degradation. Extreme vertices design was used to examine the role of four components on $NO_X$ degradation. Under our experimental conditions, 74.5% of $NO_X$ degradation was observed, using a model mixture(25% briquet ash, 10% compost, 30% soil and 40% loess) containing 100 ppb of NO. It was shown that experimental design analysis could allow selecting optimal conditions in such biodegradation processes in this study.

Estimation of Real-Driving NOx Emission Characteristics from Light-Duty Diesel Vehicles with PEMS (PEMS를 이용한 소형 경유차의 실주행 NOx 배출특성 평가)

  • Park, Yeon Jae;Kwon, Sang Il;Park, Jun Hong;Lee, Jai Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.562-572
    • /
    • 2015
  • $NO_x$ emissions from diesel vehicles have been regarded as a main cause of high $NO_2$ concentration in metropolitan area. Recent studies have shown that the on-road $NO_x$ emissions of diesel vehicles are quite higher than the emission limits specified with the pre-defined test method for emission certification. To reduce air pollutants effectively, the discrepancy of emissions in certification and real-driving conditions should be tackled. In this study, the real-driving emissions have been estimated with portable emission measurement system (PEMS). The results of this study have shown that the on-road $NO_x$ emissions from diesel vehicles have been decreased as the introduction of stricter emission regulation, EURO-6, but additional reduction should be still required and robust technologies should be applied to control $NO_x$ in real-driving conditions. RDE-LDV (Real Driving Emission - Light Duty Vehicles) test method being developed in the European Union can represent excessive on-road $NO_x$ emissions of diesel vehicles as applied emission technologies and can be a solution to remove discrepant $NO_x$ emissions between certification and Korean real-driving conditions. Among the $NO_x$ reduction technologies for EURO-6 diesel vehicles, selective catalytic reduction (SCR) system has shown the better performance than lean $NO_x$ trap (LNT) system to control on-road $NO_x$ emissions. Implementing RDE-LDV will require vehicle manufacturers to adopt the more effective $NO_x$ reduction technology in real driving conditions.

Chemical Characteristics of Fog at a Forested Area in Jinju (진주시 주변 산림에서 안개의 화학적 특성)

  • Lee, Chong-Kyu
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.51-57
    • /
    • 2012
  • This study was carried out to analyze chemical compositions of the fog water of a forest area, Jinju and to provide basic information for establishing measures on the acid fog water of forest area. The results are as follows: The pH of fog water was 4.3 in 2010, whereas the pH in 2011 was 4.0. The electrical conductivity of the fog water was $477.2{\mu}s$ in 2010, and $562.7{\mu}s$ in 2011. Among the anions, the concentration of $NO^{3-}$ was the highest, which recorded 267.1 mg/L in spring season and 279.1 mg/L in summer season, followed by $SO{_4}^{2-}$ at the concentration of 177.2 mg/L in spring season and 198.6mg/L in summer season. In autumn and winter, the concentration of $NO^{3-}$ was highest as 217.7 mg/L and 237.9 mg/L, respectively and followed by $SO{_4}^{2-}$, which concentration was 164.2 mg/L in autumn season and 190.1 mg/L in winter season (p<0.05). Among the cations, the concentration of $Ca^{2+}$ was 221.3 mg/L in spring and 233.7mg/L in summer, followed by $Na^+$ at 125.1 mg/L in spring season and 131.7 mg/L in summer In autumn and winter, the concentration of $Ca^{2+}$ was highest at 196.8 mg/L and 198.8 mg/L, followed by $Na^+$ at the concentration of 97.1 mg/L in autumn and 117.2 mg/L in winter (p<0.05). The pH of the fog rain that causes acid mist showed the correlation with $Ca^{++}$ (1% of level), $EC(r=-0.9861^{**})$, $NO^{3-}$ ($r=-0.9677^{**}$), and $SO{_4}^{2-}$ ($r=-0.9510^{**}$). The regression equation on the factors affecting the generation of acidic fog rain was estimated to be a $Y(pH)=6.4627+0.9723X_2(EC)+0.9364X_4(NO_3{^-})+0.9044X_5(SO{_4}^{2-})+0.8049X_{10}(Ca^{2+})+0.6709X_8(K^+)\;(r^2=0.8787)$.

CFD Simulation of Changesin NOX Distribution according to an Urban Renewal Project (CFD 모델을 이용한 도시 재정비 사업에 의한 NOX 분포 변화 모의)

  • Kim, Ji-Hyun;Kim, Yeon-Uk;Do, Heon-Seok;Kwak, Kyung-Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.3
    • /
    • pp.141-154
    • /
    • 2021
  • In this study, the effect of the restoration of Yaksa stream and the construction of an apartment complex by the urban renewal project in the Yaksa district of Chuncheon on air quality in the surrounding area was evaluated using computational fluid dynamics (CFD) model simulations. In orderto compare the impact of the project, wind and pollutant concentration fields were simulated using topographic data in 2011 and 2017, which stand for the periods before and after the urban renewal project, respectively. In the numerical experiments, the scenarios were set to analyze the effect of the construction of the apartment complex and the effect of stream restoration. Wind direction and wind speed data obtained from the Chuncheon Automated Synoptic Observing System (ASOS) were used as the inflow boundary conditions, and the simulation results were weighted according to the frequencies of the eight-directional inflow wind directions. The changes in wind speed and NOX concentration distribution according to the changes in building and terrain between scenarios were compared. As a result, the concentration of NOX emitted from the surrounding roads increased by the construction of the apartment complex, and the magnitude of the increase was reduced as the result of including the effect of stream restoration. The concentration of NOX decreased around the restored stream, while the concentration increased significantly around the constructed apartment complex. The increase in the concentration of NOX around the apartment complex was more pronounced in the place located in the rear of the wind direction to the apartment complex, and the effect remains up to the height of the building. In conclusion, it was confirmed that the relative arrangement of apartment complex construction and stream restoration in relation to the main wind direction of the target area was one of the major factors in determining the surrounding air quality.