• Title/Summary/Keyword: $NO_x$ removal

Search Result 252, Processing Time 0.032 seconds

Mechanistic Study of FeS Reacted with Arsenate under Various pH Conditions (FeS 수용액 내 pH에 따른 5가비소의 반응 메커니즘 연구)

  • Han, Young-Soo;Lee, Mu Yeol;Seong, Hye Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2022
  • Mackinawite (FeS), as a ubiquitous reduced iron mineral, is known as a key controller of redox reactions in anaerobic subsurface environment. The reaction of FeS with redox-sensitive toxic element such as arsenic is substantially affected by pH conditions of the given environments. In this study, the interaction of As(V) with FeS was studied under strict anaerobic conditions with various pH conditions. The pH-dependent arsenic removal tests were conducted under wide ranges of pH conditions and X-ray absorption spectroscopy (XAS) was applied to investigate the reaction mechanisms under pH 5, 7, and 9. The removal efficiency of FeS for As(V) showed the higher removal of As(V) under low pH conditions and its removal efficiency decreased with increasing pH, and no As(V) reduction was observed in 1 g/L FeS solution. However, XAS analysis indicated the reduction of As(V) to As(III) occurred during reaction between FeS and As(V). The reduced form of As(III) was particularly identified as an arsenic sulfide mineral (As2S3) in all pH conditions (pH 5, 7, and 9). As2S3 precipitation was more pronounced in pH 5 where the solubility of FeS is higher than in other pH conditions. The linear combination fitting results of XAS demonstrated that As(V) removal mechanism is concerted processes of As2S3 precipitation and surface complexation of both arsenic species.

Evaluation of ZSM-5 supported metal catalyst for NOx removal (NOx 제거를 위한 금속 담지 ZSM-5 촉매 평가)

  • Kim, Jin-Gul;Yoo, Seung-Joon;Kim, Seong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.2015-2020
    • /
    • 2009
  • $NO_x$ reduction of stationary exhaust was performed at atmospheric condition and the temperature ranging from $200^{\circ}C$ to $500^{\circ}C$ over ZSM-5 supported metal catalyst. The characteristics of the prepared catalysts were investigated using the analytical techniques such as SEM, XRD, EDX, ICP and ITR. The results of EDX and ICP analysis demonstrated that the most part of transition metal existed on the exterior surface of support. Maximum de-$NO_x$ yield over Fe/ZSM-5 shown between $380^{\circ}C$ and $400^{\circ}C$ was presumed to be due to the maximum H2 reduction rate at $400^{\circ}C$ of ITR.

De-NOX evaluation of SCR catalysts adding vanadium-graphene nanocomposite (바나듐 담지된 그래핀 나노복합체를 첨가한 SCR 촉매의 제조 및 활성 평가)

  • Jeong, Bora;Lee, Heesoo;Kim, Eok-Soo;Kim, HongDae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.252-256
    • /
    • 2015
  • Nitrogen oxides ($NO_X$) was emitted from flue gas of stationary sources and exhaust gas of mobile sources, can leads to various environments problems. Selective Catalysts Reduction (SCR) is the most effective $NO_X$ removal system. Commercial $V_2O_5-WO_3/TiO_2$ catalysts, usually containing $V_2O_5$ 0.5~3 wt%, $WO_3$ 5~10 wt%, and $V_2O_5$ is active in the reduction of $NO_X$ but also in the desired oxidation of $SO_2$ to $SO_3$. To reduce the amount of vanadium, using graphene matrix supported vanadium to synthesize nanocomposite. Then, we fabricated to 1 inch honeycomb type of SCR catalysts adding graphene-vanadium nanocomposite. The chemical-physical characteristics and the catalytic activity were performed by XRD, XRF, BET and Micro-Reactor (MR). As a result, the De-NOX performance was showed, similar to the commercial catalyst activity as 77.8 % and using nanocomposite catalyst as 77.1 % at $350^{\circ}C$.

The Treatment of Cyanide by Electro-Oxidation (전기산화를 이용한 Cyanide의 처리)

  • Kim, Hong-Tae;Lee, Young-Do;Kim, Kyu-Choul;Kim, Hak-Seok;Chun, Bong-Jun;Ku, Bong-Hun
    • Journal of Environmental Science International
    • /
    • v.17 no.3
    • /
    • pp.335-342
    • /
    • 2008
  • This study based on electro-coagulation & oxidation reaction is applied to wastewater treatment. Electro-oxidation reaction is used to remove cyanide(CN) which is contained in plating wastewater. Cyanide is transferred by gases such as $NH_3,\;NO_x,\;CO_2$. Analysis result and removal efficiency of Cyanide which is contained in heavy metal wastewater of plating plant, are shown as following paragraph. In electrode arrangement experiment, removal efficiency of carbon electrode(-)/STS316L electrode(+) arrangement method is superior to carbon electrode(-)/carbon electrode(+) arrangement method. Removal efficiencies of cyanide in different HRT such as 30 min, 45 min, 60 min, 75 min and 90 min are 85.5%, 93.1%, 98.0%, 98.7% and 99.4% respectively in carbon electrode(-)/STS316L electrode(+) arrangement method. Finally we can estimate the critical point at HRT of 60 min which the variation of removal efficiency is decreased and HRT to obtain removal efficiency of less than 1 mg/LCN is minimum 90 min.

Studies on the Water Purification Using Water Parsley (미나리 (Oenanthe javanica(Blume) DC)를 이용한 수질정화에 관한 연구)

  • 권성환;나규환;류재근;김종택
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.3
    • /
    • pp.56-63
    • /
    • 1996
  • The results of the water purification studies using water parsley (Oenanthe javanica) were obtained as follows. The removal rate of nutrient salts increased with longer plant growth periods. The results of this study use the assumption, log(T+1) = $K(C_0-C)^A$, based on Prakish's Theory. The initial concentration was calculated from experimental data. A and K are closely related to the initial concentration. It is possible to model the concentration of residual salts, as time goes by, if concentration is constant. It was observed that water parsley neutralizes acid and alkali substances promptly. The maximum suitable neutralization period is 48 hours. But water parsley withered up in strong acid and alkali solutions within a week. The removal efficiency of Cd progresses in 2 steps, which are unrelated to the initial concentration of Cd. The first part of the curve shows the concentration rapid rate of Cd removal, followed by a levelling off. The removal rate of $NO_x-N$ in the sample water tank containing 0.5 ppm Cd was between 50~80% but the removal rate was less than 20% for the higher concentration. On the other hand, increased amounts of $PO_4-P$ in the sample water tank from the third day on suspected that $PO_4-P$ was desorbed from the water parsley. The accumulation efficiency of Cd in plant was increased in proportion to the initial concentration of Cd. The accumulation phenomenon was observed in the tanks more than 50~100 times.

  • PDF

Innovative Technology of Landfill Stabilization Combining Leachate Recirculation with Shortcut Biological Nitrogen Removal Technology (침출수 재순환과 생물학적 단축질소제거공정을 병합한 매립지 조기안정화 기술 연구)

  • Shin, Eon-Bin;Chung, Jin-Wook;Bae, Woo-Keun;Kim, Seung-Jin;Baek, Seung-Cheon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1035-1043
    • /
    • 2007
  • A leachate containing an elevated concentration of organic and inorganic compounds has the potential to contaminate adjacent soils and groundwater as well as downgradient areas of the watershed. Moreover high-strength ammonium concentrations in leachate can be toxic to aquatic ecological systems as well as consuming dissolved oxygen, due to ammonium oxidation, and thereby causing eutrophication of the watershed. In response to these concerns landfill stabilization and leachate treatment are required to reduce contaminant loading sand minimize effects on the environment. Compared with other treatment technologies, leachate recirculation technology is most effective for the pre-treatment of leachate and the acceleration of waste stabilization processes in a landfill. However, leachate recirculation that accelerates the decomposition of readily degradable organic matter might also be generating high-strength ammonium in the leachate. Since most landfill leachate having high concentrations of nitrogen also contain insufficient quantities of the organic carbon required for complete denitrification, we combined a shortcut biological nitrogen removal (SBNR) technology in order to solve the problem associated with the inability to denitrify the oxidized ammonium due to the lack of carbon sources. The accumulation of nitrite was successfully achieved at a 0.8 ratio of $NO_2^{-}-N/NO_x-N$ in an on-site reactor of the sequencing batch reactor (SBR) type that had operated for six hours in an aeration phase. The $NO_x$-N ratio in leachate produced following SBR treatment was reduced in the landfill and the denitrification mechanism is implied sulfur-based autotrophic denitrification and/or heterotrophic denitrification. The combined leachate recirculation with SBNR proved an effective technology for landfill stabilization and nitrogen removal in leachate.

A study on the Degradation and By-products Formation of NDMA by the Photolysis with UV: Setup of Reaction Models and Assessment of Decomposition Characteristics by the Statistical Design of Experiment (DOE) based on the Box-Behnken Technique (UV 공정을 이용한 N-Nitrosodimethylamine (NDMA) 광분해 및 부산물 생성에 관한 연구: 박스-벤켄법 실험계획법을 이용한 통계학적 분해특성평가 및 반응모델 수립)

  • Chang, Soon-Woong;Lee, Si-Jin;Cho, Il-Hyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.33-46
    • /
    • 2010
  • We investigated and estimated at the characteristics of decomposition and by-products of N-Nitrosodimethylamine (NDMA) using a design of experiment (DOE) based on the Box-Behken design in an UV process, and also the main factors (variables) with UV intensity($X_2$) (range: $1.5{\sim}4.5\;mW/cm^2$), NDMA concentration ($X_2$) (range: 100~300 uM) and pH ($X_2$) (rang: 3~9) which consisted of 3 levels in each factor and 4 responses ($Y_1$ (% of NDMA removal), $Y_2$ (dimethylamine (DMA) reformation (uM)), $Y_3$ (dimethylformamide (DMF) reformation (uM), $Y_4$ ($NO_2$-N reformation (uM)) were set up to estimate the prediction model and the optimization conditions. The results of prediction model and optimization point using the canonical analysis in order to obtain the optimal operation conditions were $Y_1$ [% of NDMA removal] = $117+21X_1-0.3X_2-17.2X_3+{2.43X_1}^2+{0.001X_2}^2+{3.2X_3}^2-0.08X_1X_2-1.6X_1X_3-0.05X_2X_3$ ($R^2$= 96%, Adjusted $R^2$ = 88%) and 99.3% ($X_1:\;4.5\;mW/cm^2$, $X_2:\;190\;uM$, $X_3:\;3.2$), $Y_2$ [DMA conc] = $-101+18.5X_1+0.4X_2+21X_3-{3.3X_1}^2-{0.01X_2}^2-{1.5X_3}^2-0.01X_1X_2+0.07X_1X_3-0.01X_2X_3$ ($R^2$= 99.4%, 수정 $R^2$ = 95.7%) and 35.2 uM ($X_1$: 3 $mW/cm^2$, $X_2$: 220 uM, $X_3$: 6.3), $Y_3$ [DMF conc] = $-6.2+0.2X_1+0.02X_2+2X_3-0.26X_1^2-0.01X_2^2-0.2X_3^2-0.004X_1X_2+0.1X_1X_3-0.02X_2X_3$ ($R^2$= 98%, Adjusted $R^2$ = 94.4%) and 3.7 uM ($X_1:\;4.5\;$mW/cm^2$, $X_2:\;290\;uM$, $X_3:\;6.2$) and $Y_4$ [$NO_2$-N conc] = $-25+12.2X_1+0.15X_2+7.8X_3+{1.1X_1}^2+{0.001X_2}^2-{0.34X_3}^2+0.01X_1X_2+0.08X_1X_3-3.4X_2X_3$ ($R^2$= 98.5%, Adjusted $R^2$ = 95.7%) and 74.5 uM ($X_1:\;4.5\;mW/cm^2$, $X_2:\;220\;uM$, $X_3:\;3.1$). This study has demonstrated that the response surface methodology and the Box-Behnken statistical experiment design can provide statistically reliable results for decomposition and by-products of NDMA by the UV photolysis and also for determination of optimum conditions. Predictions obtained from the response functions were in good agreement with the experimental results indicating the reliability of the methodology used.

Optimization of Operation Conditions for Improving the Nitrogen Removal Efficiency in Wastewater Treatment Plant (질소제거효율 향상을 위한 하수처리장 최적 운전조건 도출 연구)

  • Choi, Eun-Hee;Bram, Klapwijk;Mathijs, Oosterhuis
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • 네덜란드 브리젠빈 하폐수처리장 최종방류수의 $NH_4$-N 및 TN(Total Nitrogen)농도를 방류수 수질기준인 각각 4 mg/L와 10 mg/L에 맞추기 위한 최적의 운전조건을 도출하기 위해 다양한 제어시스템이 시뮬레이션 되었다. 본 연구에 사용된 모델은 IWA(International Water Association) 활성슬러지 모델 No.1 (ASM No.1)이었고, GPS-X가 시뮬레이터로 사용되었다. 모델링을 위한 매개변수 민감도 분석결과 ASM No.1의 총 19개 매개변수 중 8개 변수 ($Y_H$, ksh, koh, $b_H$, ${\mu}_a$, $k_{NA}$, kh, ka)가 방류수 수질에 영향을 미치는 것으로 조사되었고 이들 매개변수에 대해 보정을 수행하여 사용하였다. SRT, 호기/무산소기간, 외부탄소원 주입시간 변화에 따른 방류수질 변화를 시뮬레이션하였는데, 호기/무산소 11h/1h인 조건에서 SRT가 20일에서 25일로 증가되면 $NH_4$-N가 5.0 mg/L에서 2.9 mg/L로 감소되었고 호기/무산소 2h/1h의 조건에서는 SRT증가에 따라 $NH_4$-N은 큰 감소를 보이지만, 바이패스되는 유입수량의 감소로 탈질율이 낮아 방류수 TN이 11.1~11.5 mg/L로 예측되는 결과가 도출되었다. 탈질율을 높이기 위한 아세트산 주입은 동일한 양의 아세트산을 무산소 전기간 (1h)동안 균일 주입하는 것 보다는 무산소 초기 15분내에 주입하는 것이 효율적인 것으로 나타났다.

NO Removal Characteristics in $N_2$ for a Dielectric Barrier Discharge Reactor with the Variation of a Discharge Gap (유전체 장벽 방전 반응기에서 방전 간극의 변화에 따른 질소 분위기하의 NO 제거 특성)

  • 차민석;이재옥;신완호;송영훈;김석준
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.407-408
    • /
    • 2000
  • 유전체 장벽 방전 반응기 (Dielectric Barrier Discharge (DBD) Reactor)를 이용한 비열 플라즈마(Non-thermal plasma) 공정에서 NO 제거 특성을 실험적으로 연구하였다. 질소 분위기에서 전자에 의한 NO 의 제거는 $N_2$ + e $\longrightarrow$ N + N + e 반응에 의한 질소의 전자충돌해리 (electron-impact dissociation)와 이 반응에 의하여 생성된 질소원자에 의한 NO 의 환원반응 N + NO $\longrightarrow$ $N_2$ + O 으로 설명될 수 있으며, 이로 인하여 $O_2$$H_2O$ 의 첨가에 따른 부산물(O, $O_3$, OH 등)에 의한 산화반응이 주로 일어나는 경우 (XO + NO $\longrightarrow$ X + NO$_2$) 와는 달리 NO 제거에 소모된 에너지를 평가하기에 용이한 장점이 있다(Penetrante et al., 1995). (중략)

  • PDF

$NO_x$ Removal of Vanadium based Catalyst with Constituent Compositions (조성성분에 따른 바나듐계 촉매의 탈질특성)

  • Baek, Geun-Ho;You, Seung-Han;Kim, Sang-Wung;Park, Young-Ok;Cha, Wang-Seog
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.294-297
    • /
    • 2010
  • 본 연구논문에서는 주요 대기 오염물질인 $NO_x$를 처리하기 위해 다양한 종류의 촉매를 사용하여 탈질 특성을 조사하였다. 여러 종류의 담체에 다양한 종류의 활성물질을 답지한 촉매를 사용하였으며, 고정층 반응기를 이용하여 반응온도, 공간속도, 수분함량 등과 같은 공정조건에 따른 탈질효율도 측정하였다. 전체적으로 담지된 활성물질이 증가할수록 탈질효율도 증가함을 알 수 있었다.

  • PDF