• Title/Summary/Keyword: $NO_x$ gas

Search Result 560, Processing Time 0.029 seconds

Reduction of NOx by CO on the Lanthanoid Perovskite-type Catalysts for Hot Gas Cleanup (고온 배가스 처리용 Lanthanoid계 Perovskite 형 촉매상에서 CO에 의한 NOx의 환원)

  • Lee, Jea-Keun;Lee, Jae-Hee;Lim, Jun-Heok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.169-178
    • /
    • 2000
  • Perovskite oxide catalysts doped on porous alumina beads are prepared in a citric acid solution. To investigate the applicability of the catalysts to the hot gas cleanup, a series of experiments on the reduction characteristics of $NO_x$ by CO as a reducing agent are carried out in a packed bed reactor containing the catalysts. Parameters tested are the operating temperature and $CO/NO_x$ molar ratio. It is found that mixed complex oxides of $La_{0.5}Sr_{0.5}CoO_3$, $SrAl_{12}O_{19}$ and $LaAl_{11}O_{18}$ are uniformly distributed on the alumina beads. The conversion efficiency of $NO_x$ by CO sharply increases with the operating temperature up to $700^{\circ}C$ and then approaches 100% when $CO/NO_x$ molar ratio is greater than 1.0. The conversion efficiency of $NO_x$ is maintained by over 98% during a continuous operation for 23 hours at $800^{\circ}C$ and space velocity of $10700hr^{-1}$.

  • PDF

Effect of Ozone Injection into Exhaust Gas on Catalytic Reduction of Nitrogen Oxides (촉매 공정의 배기가스 질소산화물 저감 성능에 미치는 오존주입의 영향)

  • Yun, Eun-Young;Mok, Young-Sun;Shin, Dong-Nam;Koh, Dong-Jun;Kim, Kyong-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • The ozone injection method was proposed to improve the catalytic process for the removal of nitrogen oxides ($NO_x$). Nitric oxide (NO) in the exhaust gas was first oxidized to nitrogen dioxide ($NO_2$) by ozone produced by dielectric barrier discharge, and then the exhaust gas containing the mixture of NO and $NO_2$ was directed to the catalytic reactor where both NO and $NO_2$ were reduced to $N_2$ in the presence of ammonia as the reducing agent. A commercially available $V_2O_5-WO_3/TiO_2$ catalyst was used as the catalytic reactor. The $NO_2$ content in the mixture of NO and $NO_2$ was changed by the amount of ozone added the exhaust gas. The effect of reaction temperature, initial $NO_x$ concentration, feed gas flow rate, and ammonia concentration on the removal of $NO_x$ at various $NO_2$ contents was examined and discussed. The increase in the content of $NO_2$ by the ozone injection remarkably improved the performance of the catalytic reactor, especially at low temperatures. The present ozone injection method appears to be promising for the improvement of the catalytic reduction of $NO_x$.

Environmental analysis of present and future fuels in 2D simple model marine gas tubines

  • El Gohary, M. Morsy
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.559-568
    • /
    • 2013
  • Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the $CO_2$ emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the $NO_x$ emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more $NO_x$ than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive $NO_x$ control measures are a must to control these emissions levels.

A Simultaneous Reduction of Smoke and $NO_X$ with Biodiesel Fuel in a D. I. Diesel Engine (직접분사식 디젤기관에서 바이오디젤유 적용시 매연과 $NO_X$의 동시저감)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.65-71
    • /
    • 2005
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engine are recognized main cause which influenced environment strong. In this study, the potential possibility of biodiesel fuel was investigated as an alternative fuel for a naturally aspirated D.I. diesel engine. The smoke emission of biodiesel fuel was reduced remarkably in com parison with diesel fuel, that is, it was reduced approximately 48.5% at 2500rpm, full load. But, power, torque and brake specific energy consumption didn't have no large differences. But, $NO_X$ emission of biodiesel fuel was increased com pared with commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of $NO_X$ emission has been investigated. It was found that simultaneous reduction of smoke and $NO_X$ was achieved with biodiesel fuel(20vol-%) and cooled EGR method($5{\sim}15%$).

Flame Diagnosis using Image Processing Technique (영상처리 기술을 이용한 연소상태 진단)

  • Lee, Tae-Young;Kim, Song-Hwan;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.196-202
    • /
    • 1999
  • Recent trend changes a criterion for evaluation of burner that environmental problem is raised as global issue. For efficient driving problem, the higher thermal efficiency and the lower oxygen in exhaust gas, burner is evaluated the better. For environmental problem, burner must satisfy $NO_{X}$ limit and CO limit. Consequently, 'good burner' means on whose thermal efficiency is high under the constraint of $NO_{X}$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop feedback control scheme whose output is the consistency of $NO_{X}$ and CO. This paper describes development of real time flame diagnosis technique that evaluate and diagnose combustion state such as consistency of components in exhaust gas, stability of flame in quantitative sense. This study focuses on wave length of luminescence from chemical reaction measurement of the luminescence via optical measuring apparatus and derive correlation with consistency of components in exhaust gas by image processing technique.

  • PDF

The Pollutant Emissions Characteristics of Lean-Rich Combustion System with Exhaust Gas Reciculation (EGR 시스템을 적용한 린-리치 연소시스템의 공해물질 배출 특성 연구)

  • Oh, Wheesung;Yu, Byeonghun;Kim, Jong-Hyun;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.233-234
    • /
    • 2014
  • Lean-rich combustion system was composed both fuel-lean and fuel-rich flame at once. Each of fuel-lean and fuel-rich combustion types to reduce Thermal $NO_x$ and obtain flame stability. This study was confirmed a stability of flame through variation of flame shape that EGR was applied and compared the emission characteristics of EGR lean-rich combustion system to normal premixed combustion system at real condition to review a utility of the system. As a result, emission index of $NO_x$ and CO generated from EGR lean-rich combustion system at global equivalence ratio is 0.85 just half level($NO_x$ 0.31 g/kg, CO 0.08g/kg) compared to the amount generated from normal premixed combustion system at equivalence ratio is 0.78.

  • PDF

Exhaust Gas Recirculation/Water Injection Experimental Results for NOx Emission Reduction in Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.7
    • /
    • pp.823-832
    • /
    • 2007
  • This paper presents the static characteristics of EGR-WI combined system. The water injection system was statically characterized by recording the engine exhaust outlet $NO_x$ emissions for comparison with baseline $NO_x$ emissions. Effects of the water injection system on CO and HC emissions and fuel consumption were examined. The research engine used for these experiments was a 103 kW turbocharged, intercooled, 2.5 L VM Motori CIDI engine equipped with a cooled EGR system. Water injection in the intake system demonstrated the potential for significant reductions in engine outlet $NO_x$ emissions. The system has reduced engine outlet $NO_x$ emissions by 40-50%, but caused significant increases in CO and HC emissions, particularly at low loads. Fuel consumption effects were minimal.

Effects of Reburning on Heat Transfer Characteristics and $NO_x$ Reduction (재연소가 열전달 특성과 $NO_x$ 감소에 미치는 영향)

  • Lee, Chang-Yeop;Baek, Seung-Wook
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.2
    • /
    • pp.18-25
    • /
    • 2005
  • An experimental study has been conducted to evaluate the effects of reburning on $NO_x$ reduction and also to examine heat transfer characteristics from LPG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LPG gas as main fuel and also as reburn fuel. The effects of reburn fuel fraction and injecting location of reburn fuel are studied. The paper reports data on flue gas emissions, temperature distribution in furnace and various heat fluxes at the wall for a wide range of experimental conditions. In a steady state, the total as well as radiative heat flux from the flame to the wall of furnace has been measured using a heat flux meter. Temperature distribution and emission formation in furnace have been also measured and compared.

  • PDF

Numerical Study to Develop Low-NOx Multi-nozzle Burner in Rotary Kiln (로터리 킬른용 Low-NOx 다공노즐버너 개발을 위한 수치해석적 연구)

  • Ahn, Seok-Gi;Kim, Jin-Ho;Hwang, Min-Young;Kim, Gyu-Bo;Jeon, Chung-Hwan
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.130-140
    • /
    • 2014
  • Rotary kiln burner has been developed continuously to improve process efficiency and exhaust emission. In this study, the characteristics of the flame and exhaust emission were numerically analyzed according to the diameter of primary air nozzle, equivalent ratio of burner, and equivalent ratio at center and side nozzle for development of multi-nozzle burner in the COG(Coke Oven Gas) rotary kiln for sintering iron ore. The results indicated that the flame length and $NO_x$ emission increase, as the diameter of primary air nozzle and equivalent ratio of burner increase. And according to the change of equivalent ratio at the center and the side of the nozzle, the flame length and average temperature in the kiln show very little change but the $NO_x$ emission shows obvious difference. In conclusion, the best design conditions which have satisfying flame length, average temperature and $NO_x$ emission are as follows: $D_2/D_1$ is 1.33, equivalent ratio of burner is 1.25 and center nozzle conditions are Rich.

Effect of Sludge Pellets on $NO_x$ REmoval in $BaTiO_3$-sludge Packed-bed Reactor ($BaTiO_3$-슬러지 Packed-bed형 반응기에서 $NO_x$제거에 미치는 슬러지의 영향)

  • 박재윤;송원섭;고희석;박상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.861-867
    • /
    • 2001
  • In this paper, in order to investigate the catalytic effect of the sludge exhausted from waterworks on NO$_{x}$ removal, we measure NO removal characteristics with and without sludge pellets in BaTiO$_3$-sludge packed-bed reactor of plate-plate geometry. NO initial concentration is 50 ppm balanced with air and a gas flow rate is 5ι/min. Gas temperature is changed from 25 to 10$0^{\circ}C$ to investigate the role of sludge pellet on removing active oxygen species and NO$_2$. BaTiO$_3$pellets is filled for coronal discharge at upstream of reactor and sludge pellets is filled for catalytic effect at downstream of reactor. The volume percent of sludge pellets to BaTiO$_3$pellets is changed from 0% to 100% and AC voltage is supplied to the reactor for discharging simulated gases. In the results, when sludge pellets is put at the downstream of plasma reactor, NO removal rate is slightly increased. However, NO$_2$and $O_3$ as by-products during NO removal is significantly decreased from 51ppm without sludge pellets to 5 ppm with sludge pellets and from 50 ppm without sludge pellets to 0.004ppm with sludge pellets, respectively. Therefore, NO$_{x}$(NO+NO$_2$) removal rate is increased up to 93%. It is thought that sludge pellet maybe react with active oxygen species and NO$_2$ generated by corona discharge in surface of BaTiO$_3$pellets, the then NO$_2$O$_3$as by-products are considerably decreased. When we increase gas temperature from room temperature to 10$0^{\circ}C$, NO removal rate is decreased, while NO$_2$ concentration is independent on gas temperature. These result suggest that the removal mechanism of active oxygen species and NO$_2$in sludge pellet is not absorption, but chemical reaction. Therefore we expect that sludge pellets exhausted for waterworks could be used as catalyst for NO$_{x}$ removal with high removal rate and low by-product.oduct.

  • PDF