• Title/Summary/Keyword: $NO_x$ gas

Search Result 562, Processing Time 0.029 seconds

A Study on Capacity of Electric Propulsion System by Load Analysis of 6,800TEU Container Ship (6,800TEU 컨테이너선의 부하분석을 통한 전기추진시스템 용량 연구)

  • Jang, Jae-Hee;Son, Na-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.42 no.6
    • /
    • pp.437-445
    • /
    • 2018
  • IMO (International Maritime Organization) has been strengthening the regulations of ship emission gas such as sulfur oxides (SOX), nitrogen oxides (NOX) and carbon dioxides (CO2) to protect the marine environment. Especially, ECA (Emission Control Area) has been set and operated in the USA and US. As a countermeasure against these environmental regulations, the demand for environmentally, friendly and highly efficient vessels has led to a growing interest in technology related research with respect to electric propulsion systems capable of reducing exhaust gas. Container ships were excluded from the application coverage of the electric propulsion systems for reasons of operation at economical speed. However, in the future, the need for electric propulsion system is expected to rise, because it is easy to monitor and control so that it can be an applicate to smart ship which are represented by fourth industrial revolution technology. In this study, research was carried out to design a generator and battery capacity through the load analysis of the 6,800TEU container ship to apply the electric propulsion system of the container ship. A capacity design based on the load analysis has an advantage that the generator can be operated in a high efficiency section through the load distribution control using the battery.

Diffusion Characteristics Based on the Gas Leakage Direction and Air Change per Hour in a Enclosed Space on Board a Ship (밀폐된 선내 공간에서 가스 누출방향과 환기횟수에 따른 확산특성)

  • Seong Min Lee;Ha Young Kim;Byeol Kim;Kwang Il Hwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Hydrogen is being touted as one of the energy sources to combat the climate change crisis. However, hydrogen can leak into enclosed spaces, rise to the ceiling, accumulate, and cause fires and explosions if it encounters an ignition source. In particular, ships that transport hydrogen or use it as a fuel comprise multiple enclosed spaces. Therefore, the dif usion characteristics within these spaces must be understood to ensure the safe use of hydrogen. The purpose of this study is to experimentally determine the diffusion characteristics of helium, which has similar properties to hydrogen, in a closed space on board a ship, and to determine the change in the oxygen concentration along the leakage direction as the air change per hour(ACH) increases to 25, 30, 35, 40, and 45 through CFD simulation. The study, results revealed that the oxygen concentration reduction rate was 2% for leakage in the -z direction and 1% for leakage in the +x and +z directions, and the ventilation time was 15 min 30 s for leakage in the -z direction, 7 min for leakage in the +x direction, and 9 min for leakage in the +z direction, showing that differences existed in the oxygen concentration and ventilation time depending on the leakage direction. In addition, no significant difference was observed in the rate of oxygen concentration reduction and ventilation time in all leakage directions from the ACH of 35 and above in the experimental space. Therefore, because the oxygen concentration and ventilation time were not improved by increasing the ACH, 35 was noted as the optimal ACH in this experimental environment.

Effects of Dietary Probiotic on Performance, Noxious Gas Emission and Microflora Population on the Cecum in Broiler (복합 생균제 첨가가 육계 생산성, 유해가스 발생량 및 맹장내 균총에 미치는 영향)

  • Ko, Y.D.;Sin, J.H.;Kim, S.C.;Kim, Y.M.;Park, K.D.;Kim, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.559-568
    • /
    • 2003
  • This study was carried out to investigate the effect of probiotics on the performance, nutrients digestibility, noxious gas emission and microflora population on the cecum of broilers. A total of 120 broilers, consisted of 4 treatments X 3 replicates X 10 broilers per replicates, were fed the experimental diets containing 0, 0.1, 0.3 and 0.5% probiotics for 5 weeks. Broilers fed the diets containing 0.1 and 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the others from the 3rd to 4th week. Broilers fed 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the other levels from the 5th to 6th week. Broilers fed the diets containing 0.1% and 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the others from the 2nd to 6th week. Dry matter digestibility was significantly (p<0.05) improved with 0.3% probiotic. Emission of ammonia and sulfate hydrogen gas was significantly (p<0.05) decreased at 6th week. However, there was no (p<0.05) difference at the levels of 0, 0.1, 0.3 and 0.5% at the 4th weeks. There was an increase in the lactobacillus sp, but there was a decrease in the microflora population of coliforms in the cecum of broiler with 0.1% and 0.3% probiotics. These results indicated that the compound probiotics of 0.1${\sim}$0.3% were effective in the body weight gain, feed conversion, nutrients digestibility, noxious gas emission and microflora population on the cecum in broilers.

Fabrication and NOx Gas Sensing Properties of LaMeO3 (Me = Cr, Co) by Polymeric Precursor Method (Polymeric Precursor법에 의한 LaMeO3 (Me = Cr, Co)의 제조 및 NOx 가스 검지 특성)

  • Lee, Young-Sung;Shimizu, Y.;Song, Jeong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.468-475
    • /
    • 2011
  • [ $LaMeO_3$ ](Me = Cr, Co) powders were prepared using the polymeric precursor method. The effects of the chelating agent and the polymeric additive on the synthesis of the $LaMeO_3$ perovskite were studied. The samples were synthesized using ethylene glycol (EG) as the solvent, acetyl acetone (AcAc) as the chelating agent, and polyvinylpyrrolidone (PVP) as the polymer additive. The thermal decomposition behavior of the precursor powder was characterized using a thermal analysis (TG-DTA). The crystallization and particle sizes of the $LaMeO_3$ powders were investigated via powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and particle size analyzer, respectively. The as-prepared precursor primarily has $LaMeO_3$ at the optimum condition, i.e. for a molar ratio of both metal-source (a : a) : EG (80a : 80a) : AcAc (8a) inclusive of 1 wt% PVP. When the as-prepared precursor was calcined at $700^{\circ}C$, only a single phase was observed to correspond with the orthorhombic structure of $LaCrO_3$ and the rhombohedral structure of $LaCoO_3$. A solid-electrolyte impedance-metric sensor device composed of $Li_{1.5}Al_{0.5}Ti_{1.5}(PO_4)_3$ as a transducer and $LaMeO_3$ as a receptor has been systematically investigated for the detection of NOx in the range of 20 to 250 ppm at $400^{\circ}C$. The sensor responses were able to divide the component between resistance and capacitance. The impedance-metric sensor for the NO showed higher sensitivity compared with $NO_2$. The responses of the impedance-metric sensor device showed dependence on each value of the NOx concentration.

Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass (국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과)

  • Yoon, Sang-Hee;Beak, Geon-Uk;Moon, Ji-Hong;Jo, Sung-Ho;Park, Sung-Jin;Kim, Jae-Young;Seo, Myung-Won;Yoon, Sang-Jun;Yoon, Sung-Min;Lee, Jae-Goo;Kim, Joo-Sik;Mun, Tae-Young
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without air-staging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.

Hydrodynamic Properties of Interconnected Fluidized Bed Chemical-Looping Combustors (상호 연결된 유동층 매체 순환식 연소로의 수력학적 특성)

  • Son, Sung Real;Go, Kang Seok;Kim, Sang Done
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The chemical-looping combustion(CLC) has advantages of no energy loss for separation of $CO_2$ without $NO_x$ formation. This CLC system consists of oxidation and reduction reactors where metal oxides particles are circulating through these two reactors. In the present study, the reaction kinetic equations of iron oxide oxygen carriers supported on bentonite have been determined by the shrinking core model. Based on the reactivity data, design values of solid circulation rate and solids inventory were determined for the rector. Two types of interconnected fluidized bed systems were designed for CLC application, one system consists of a riser and a bubbling fluidized bed, and the other one has a riser and two bubbling fluidized beds. Solid circulation rates were varied to about $30kg/m^2s$ by aeration into a loop-seal. Solid circulation rate increases with increasing aeration velocity and it increases further with an auxiliary gas flow into the loop-seal. As solid circulation rate is increased, solid hold up in the riser increases. A typical gas leakage from the riser to the fluidized bed is found to be less than 1%.

TENSILE BOND STRENGTH OF ALUNMINA CORE TREATED BY ION ASSISTED REACTION (이온보조반응법으로 처리한 알루미나 코아의 인장결합강도에 관한 연구)

  • Kim, Hyeong-Seob;Woo, Yi-Hyung;Kwon, Kung-Rock;Choi, Boo-Byung;Choi, Won-Kook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.704-723
    • /
    • 2000
  • This study was undertaken to evaluate the tensile bond strength of In-Ceram alumina core treat-ed by ion assisted reaction(IAR). Ion assisted reaction is a prospective surface modification technique without damage by a keV low energy ion beam irradiation in reactive gas environments or reactive ion itself. 120 In-Ceram specimens were fabricated according to manufacturer's directions and divided into six groups by surface treatment methods of In-Ceram alumina core. SD group(control group): sandblasting SL group: sandblasting + silane treatment SC group: sandblasting + Siloc treatment IAR I group: sandblasting + Ion assisted reaction with argon ion and oxygen gas IAR II group: sandblasting + Ion assisted reaction with oxygen ion and oxygen gas IAR III group: sandblasting + Ion assisted reaction with oxygen ion only For measuring of tensile bond strength, pairs of specimens within a group were bonded with Panavia 21 resin cement using special device secured that the film thickness was $80{\mu}m$. The results of tensile strength were statistically analyzed with the SPSS release version 8.0 programs. Physical change like surface roughness of In-Ceram alumina core treated by ion assistad reaction was evaluated by Contact Angle Measurement, Scanning Electron Microscopy, Atomic Force Microscopy; chemical surface change was evaluated by X-ray Photoelectron Spectroscopy. The results as follows: 1. In tensile bond strength, there were no statistically significant differences with SC group, IAR groups and SL group except control group(P<0.05). 2. Contact angle measurement showed that wettability of In-Ceram alumina core was enhanced after IAR treatment. 3. SEM and AFM showed that surface roughness of In-Ceram alumina core was not changed after IAR treatment. 4. XPS showed that IAR treatment of In-Ceram alumina core was enabled to create a new functional layer. A keV IAR treatment of In-Ceram alumina core could enhanced tensile bond strength with resin cement. In the future, this ion assisted reaction may be used effectively in various dental materials as well as in In-Ceram to promote the bond strength to natural tooth structure.

  • PDF

Effects of Biogas Composition Variations on Engine Performance (바이오가스의 성분 변화가 엔진 성능에 주는 영향)

  • Park, Seung-Hyun;Park, Cheol-Woong;Kim, Young-Min;Lee, Sun-Youp;Kim, Chang-Gi
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.5
    • /
    • pp.25-30
    • /
    • 2011
  • Biogas obtained from the biodegradable organic wastes in an anaerobic digester consists of $CH_4$ and inert gases such as $CO_2$ and $N_2$. Since the composition of biogas varies by anaerobic digester conditions and the origin of wastes, it is necessary to respond to these variations so as to make stable combustion and accomplish high efficiency when it is used as a fuel for power generating SI engines. In this study, efforts have been made to investigate the effect of changes in the calorific values of biogas on the engine performance and exhaust characteristics. The biogas was simulated by supplying of $CH_4$ with $N_2$ dilution of various ratios, and ECM was developed to achieve accurate control of ignition and combustion. The results show that as the $CH_4$ concentration of the biogas decreases, the optimal spark timing is advanced due to the elevated thermal capacity and lowered $O_2$ concentration of the in-cylinder charge. Furthermore, since combustion temperature was reduced by increased inert gas, $NO_x$ emissions decreased, whereas THC emissions increased.

Greenhouse Gas Reduction by Air Quality Management Policy in Gyeonggi-do and Its Co-benefit Analysis (경기도 대기질 개선 정책의 온실가스 동시 저감 및 그에 따른 공편익 효과 분석)

  • Kim, Dong Young;Choi, Min-Ae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.570-582
    • /
    • 2017
  • In recent years, national and local government's air quality management and climate change adaptation policy has been significantly strengthened. The measures in the two policies may be in a relationship of trade-off or synergy to each other. Greenhouse gases and air pollutants are mostly emitted from the same sources of using considerable amounts of fossil fuels. Co-benefits, in which either measure has a positive effect on the other, may be maximized by reducing the social costs and by consolidating the objectives of the various policies. In this study, the co-benefits were examined by empirically analyzing the effects of air pollutants and greenhouse gas emission reduction, social cost, and cost effectiveness between the two policies. Of the total 80 projects, the next 12 projects generated co-benefits. They are 1) extend restriction area of solid fuel use, 2) expand subsidy of low-$NO_x$ burner, 3) supply hybrid-vehicles, 4) supply electric-vehicles, 5) supply hydrogen fuel cell vehicles, 6) engine retrofit, 7) scrappage of old car, 8) low emission zone, 9) transportation demand management, 10) supply land-based electric of ship, 11) switching anthracite to clean fuel in private sector, 12) expand regional combined-energy supply. The benefits of air pollutants and greenhouse gas-related measures were an annual average of KRW 2,705.4 billion. The social benefits of the transportation demand management were the highest at an annual average of KRW 890.7 billion, and followed by scrappage of old cars and expand regional combined-energy supply. When the social benefits and the annual investment budgets are compared, the cost effectiveness ratio is estimated to be about 3.8. Overall, the reduction of air pollutants caused by the air quality management policy of Gyeonggi-do resulted in an annual average of KRW 4,790.2 billion. In the point sources management sector, the added value of $CO_2$ reduction increased by 4.8% to KRW 1,062.8 billion, while the mobile sources management sector increased by 3.6% to KRW 3,414.1 billion. If social benefits from $CO_2$ reduction are added, the annual average will increase by 7.2% to KRW 5,135.4 billion. The urban and energy management sectors have shown that social benefits increase more than twice as much as the benefits of $CO_2$ reduction. This result implies that more intensive promotion of these measures are needed. This study has significance in that it presents the results of the empirical analysis of the co-benefits generated between the similar policies in the air quality management and the climate change policy which are currently being promoted in Gyeonggi-do. This study suggested that the method of analyzing the policy effect among the main policies in the climate atmospheric policy is established and the effectiveness and priority of the major policies can be evaluated through the policy correlation analysis based on the co-benefits. It is expected that it could be a basis for evaluation the efficiency of the climate change adaptation and air quality management policies implemented by the national and local governments in the future.

Numerical Study on the Arrangement of AIG for Determining the $NH_3$ Concentration Distribution in the Package Type of Small Scale SCR System (패키지형 소형 SCR 시스템 내 $NH_3$ 농도분포 제어를 위한 AIG의 배치에 관한 전산해석적 연구)

  • Park, Seon-Mi;Chang, Hyuk-Sang;Zhao, Tong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.368-377
    • /
    • 2011
  • A package type of SCR (selective catalytic reduction) system that was proposed for removing the $NO_x$ found in flue gas from the small scale of air pollution sources was evaluated. The efficiency of the SCR system is determined by the proper utilization of catalytic media installed inside of the system, and the proper distribution of flow velocity and $NH_3$ concentration in the flue gas is a crucial factor for using the catalytic media. In this study, the distributions of $NH_3$ concentration were estimated under the various arrays and shapes of AIG at the given gas flow condition. The value of RMS (%) in $NH_3$ concentration is 95.3% at co-current flow (at $0^{\circ}$) injection but it is 90.1% at the condition of counter-current flow (at $120^{\circ}$) condition, which implies the counter-current injection is more favorable. By rearranging the $NH_3$ injection flow rates based on the distribution of velocity and $NH_3$ distribution in basic calculation, the value of RMS (%) in $NH_3$ concentration was reduced to 62.8%. The enhanced effect of $NH_3$ mixing by the combined effect of arrays and shapes are complied in the study.