• Title/Summary/Keyword: $NO_x$ gas

Search Result 560, Processing Time 0.032 seconds

Pressure-Temperature Diagram of Critical Condition for Disproportionation of Nd-Fe-B Alloy in Hydrogen

  • Kwon, H.W.;Kim, D.H.;Yu, J.H.
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.155-158
    • /
    • 2010
  • The HDDR (hydrogenation, disproportionation, desorption, and recombination) process can be used as an effective way of converting a no coercivity Nd-Fe-B ingot material, with a coarse $Nd_2Fe_{14}B$ grain structure, to a highly coercive one with a fine grain structure. Careful control of the HDDR process can lead to an anisotropic powder with good $Nd_2Fe_{14}B$ grain texture; the most critical step for inducing texture is disproportionation. The critical conditions (hydrogen pressure and temperature) for the disproportionation reaction of fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ (x = 0 or 0.3, y = 0 or 0.2) alloys, in different atmospheres of pure hydrogen and a mixed gas of hydrogen and argon, was investigated with TPA (thermopiezic analyser). From this, the hydrogen pressure-temperature diagram showing the critical conditions was established. The critical disproportionation temperature of the fully hydrogenated $Nd_{12.5}Fe_{81.1-(x+y)}B_{6.4}Ga_xNb_y$ alloys was slightly increased as the hydrogen pressure decreased in both pure hydrogen and mixed gas. The critical disproportionation temperature of the hydrogenated alloys was higher in the mixed gas than in pure hydrogen. Addition of Ga and Nb increased the critical disproportionation temperature of the fully hydrogenated Nd-Fe-B alloys.

A Study on Cold Start Emission Characteristics using the Syngas in a SI Engine (합성가스를 이용한 SI 엔진의 냉간시동 배기가스 배출특성에 관한 연구)

  • Song, Chun-Sub;Kim, Chang-Gi;Kang, Kern-Young;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.66-72
    • /
    • 2008
  • Fuel reforming technology for the fuel cell vehicles could be adopted to internal combustion engine for the reduction of engine out emissions. Since syngas which is reformed from fossil fuel has hydrogen as a major component, it has abilities to enhance the combustion characteristics with wide flammability and high speed flame propagation. In this paper, syngas was feed to 2.0 liter gasoline engine during the cold start and early state of idle condition. Not only cold start HC emission but also $NO_x$ emission could be dramatically reduced due to the fact that syngas has no HC and has nitrogen up to 50% as components. Exhaust gas temperature was lower than that of gasoline feeding condition. Delayed ignition timing, however, resulted in increased exhaust gas temperature approximated to gasoline condition. It is supposed that the usage of syngas in the gasoline internal combustion engine is an effective solution to meet the future strict emission regulations by the reduction of cold start THC and $NO_x$ emissions.

Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in Power Plant Boilers with FGR System (FGR 시스템 공력 플랜트 보일러의 성능 및 배기 배출물에 미치는 재순환 배기의 영향)

  • Bae, Myung-Whan;Jung, Kwong-Ho;Choi, Seung-Chul;Cho, Yong-Soo;Kim, Yi-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1686-1691
    • /
    • 2004
  • The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air(OFA) damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing $NO_{x}$ emissions. To activate the combustion, the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between $0^{\circ}$ and $90^{\circ}$ , and the OFA with 0 to 20% into the flame is supplied, as the combustion air supplied to burner is reduced. It is found that the fuel consumption rate divided by evaporation rate does not show an obvious tendency to increase or decrease with rising the FOR rate, and $NO_{x}$ emissions are decreased, at the same OF A damper opening, as FOR rates are elevated and boiler loads are dropped.

  • PDF

An Experimental Study about the Running of a Gas Turbine by using Hydrogen and Oxygen (수소와 산소를 이용한 가스터빈의 구동에 관한 실험 연구)

  • Kang, J.S.;Oh, B.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.1
    • /
    • pp.5-10
    • /
    • 1997
  • Because of environmental pollution and reserve limitations of fossil fuels, several alternative energies have been developing. One of them, the hydrogen is researched as a highly probable solution. In this study pure hydrogen gas and oxygen gas are burned in combustor to reduce the emission, and a gas turbine is used. Cooling water around the combustor recovers the cooling heat loss to useful work by being expanded from liquid to vapor, being injected into the combustor and making pressure rise with working fluid to get more turbine power. Because pure hydrogen and oxygen are used, there is no carbonic emission such as CO, $CO_2$, HC nor $NO_x$, and $SO_x$. The power is obtained by turbine system, which makes lower noise and vibration than any reciprocating engine. Running of a turbine is searched under various conditions of hydrogen flow rate and water injection rate. Maximum speed of the turbine is obtained when the combustion reaches steady state. It is enable to determine the optimum rate between hydrogen flow and water injection which makes turbine run maximum speed.

  • PDF

Thermal Performance of a Finned-tube Heat Exchanger used in Condensing Gas Boiler

  • Kang, Hie-Chan;Lim, Bok-Bin;Lee, Jung-Man;Kim, Moo-Han
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • In the present study, an experiment was conducted to investigate the heat and mass transfer performance of heat exchangers used in the condensing gas boiler. Two types of spiral circular fin-tube heat exchangers and a plain tube were tested in the flue gas of propane and dry air. Heat and mass transfer coefficients were measured and compared with the previous correlations. The experimental data for the sensible heat transfer of the plain tube reasonably agreed with the previous correlations for dry air and flue gas. However, the mass transfer coefficient of the plain tube was greater than the previous correlations. The pH, $NO_x$, and $SO_x$ data of condensate were provided.

MEMBRANE PROCESSES IN ENVIRONMENTAL TECHNOLOGY

  • Blume, I.;Smolders, C.A.
    • Membrane Journal
    • /
    • v.2 no.1
    • /
    • pp.1-20
    • /
    • 1992
  • Classical membrane processes like microfiltration (MF), ultrafiltration (UF) and reverse osmosis (RO) are being applied in the last years more frequently in environmental and effluent process problems. Newer technologies and developments like pervaporation (PV) and gas sepaxation (GS) recently found commercial applications in the treatment of waste waters and gas streams. The incentive here is either the clean-up from organic components to comply with federal emission regulations or the recovery of the organics for economical reasons. Processes still in their development stage are combinations of chemical reactions with membrane processes to separate and treat $SO_x$ and $NO_x$ laden waste gas streams in the clean-up of stack-gases. In this paper we will first give a short overview of the more recent developments in MF, UF and RO. This is followed by a closer look on newer technologies applied in environmental problems. The applications looked at are the recovery of organic components from solvent laden gas streams and the separation of organic volatiles from aqueous waste waters via pervaporation. Technical solutions, the advantages and disadvantages of the processes and. where possible, cost estimations will be presented.

  • PDF

Stack Performances of Proton Exchange Membrane Fuel Cell

  • Kho, Young-Tai;Cho, Won-Ihl;Park, Yong-Woo-
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1994.11a
    • /
    • pp.14-16
    • /
    • 1994
  • The development of proton exchange membrane fuel cells(PEMFCs) with high energy efficiencies and high power densities is gaining momentum because their performance characteristics are attractive for terrestrial(power sources for electrical vehicles, stand-by power), space and underwater application[1]. Fuel cells are capable of running on non-petroleum fuels such as methanol, natural gas or hydrogen and also have major impact on improving air quality. They virtually eliminate particulates, NO$_{x}$, SO$_{x}$, and significant reduce hydrocarbons and carbon monoxide. Especially, fuel cell-battery hybrid power sources appear to be well suited to overcome both the so-called battery problem(low energy density) and the fuel cell problem(low power density)[2].[2].

  • PDF

Research Progress in Membrane and Catalyst for Highly Selective Chemiresistive Gas Sensors (저항변화식 가스센서 선택성 향상을 위한 멤브레인 및 촉매 연구동향)

  • Jang, Ji-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • Direct exposure to toxic and hazardous gases has always been considered as the most pervasive problem worldwide, leading to a gradual increase in the number of asthma patients due to NOx/SOx gases inhaling and exposure to 50 ppm formaldehyde gases. Therefore, the development of accurate gas sensors is a key issue for resolving these problems. To address such issues, the development of membranes for selective filtering of target molecules as well as nanocatalyst for enhancing the sensing selectivity is highly crucial. In this review, the research progress for porous membrane materials (e.g. MOFs, and graphene) and nanocatalyst technology for the development of selective and accurate gas sensors will be discussed.

Study of Hydrogen Combustion with n Gun-type Burner (건타입 버너의 수소 연소에 관한 연구)

  • Lee, Young-Lim;Lee, Kum-Bae;Sim, Kyu-Sung;Jun, Yong-Du;Ryu, Jae-Eun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1579-1586
    • /
    • 2003
  • A gun-type burne. fur a LPG(Liquified Petroleum Gas) boiler was utilized for hydrogen combustion. The study was performed to obtain fundamental data prior to the design of a very low NO$\_$x/, hydrogen-fueled burner. First, numerical simulations were performed to predict mixing characteristics between air and fuel flows, and temperature distributions, etc. Experimental study was then performed to find out flame lengths, temperature distributions, and NO$\_$x/ concentrations. The results showed that a gun-type burner for a LPG boiler can be successfully used for hydrogen combustion without any major retrofitting. The hydrogen flame was very stable and 75 ppm of NO$\_$x/ in average was observed for the conditions considered in this study. Hydrogen combustion could be therefore a solution to avoid the problem of green-house gas(CO$_2$) if hydrogen becomes cost-effective.

Internal modifications to reduce pollutant emissions from marine engines. A numerical approach

  • Lamas, M.I.;Rodriguez, C.G.;Rodriguez, J.D.;Telmo, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.493-501
    • /
    • 2013
  • Taking into account the increasingly stringent legislation on emissions from marine engines, this work aims to analyze several internal engine modifications to reduce $NO_x$ (nitrogen oxides) and other pollutants. To this end, a numerical model was employed to simulate the operation cycle and characterize the exhaust gas composition. After a preliminary validation process was carried out using experimental data from a four-stroke, medium-speed marine engine, the numerical model was employed to study the influence of several internal modifications, such as water addition from 0 to 100% water to fuel ratios, exhaust gas recirculation from 0 to 100% EGR rates, modification of the overlap timing from 60 to $120^{\circ}$, modification of the intake valve closing from 510 to $570^{\circ}$, and modification of the cooling water temperature from 70 to $90^{\circ}C$. $NO_x$ was reduced by nearly 100%. As expected, it was found that, by lowering the combustion temperature, there is a notable reduction in $NO_x$, but an increase in CO (carbon monoxide), HC (hydrocarbons) and consumption.